SIR, SAD, MAD, DM: Integrated Methods

  • H. Krabbendam
Part of the NATO ASI Series book series (NSSB, volume 274)


For a long time the method of isomorphous replacement has been the only method used to solve the phase problem in protein crystallography. Starting with a native protein crystal, of which a reflection data set has been measured (leading to |FP i|, an abbreviation for |Fhi P|), this crystal is soaked in a solution of a heavy-atom salt for a day, a week, or perhaps for even longer. What one hopes for is that a heavy atom will attach to a protein molecule in a specific way (i.e. identically in a great number of unit cells) without changing (i.e. less than 0.5%) the geometry of the unit cell. Subsequently a reflection dataset of the alleged heavy-atom derivative is collected (leading to values for |Fi HP|).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bijvoet, J.M.(1949) Proc. Acad. Sci. Amst. 52, 313Google Scholar
  2. Black, P.J. (1965). Nature. 206, 1223–1226CrossRefGoogle Scholar
  3. Blundell, T.L. & Johnson, L.N. (1976). “Protein Crystallography”, Academic Press, p. 154Google Scholar
  4. Cascarano, C, Giacovazzo, C., Peerdeman, A.F. & Kroon, J. (1982). Acta Cryst. A38, 710–717CrossRefGoogle Scholar
  5. Giacovazzo, C. (1983). Acta Crystl A39, 585–592CrossRefGoogle Scholar
  6. Fortier, S., Moore, N.J. & Fraser, M.E. (1985). Acta Cryst. A41 571–577CrossRefGoogle Scholar
  7. Furey, W.F., Robbins, A.H., Clancey, L.L., Winge, D.R., Wang, B.C. & Stout, C.D. (1986). Science 231, 704–710CrossRefGoogle Scholar
  8. Hauptman, H.A. (1982a). Acta Cryst. A38, 289–294CrossRefGoogle Scholar
  9. Hauptman, H. A. (1982b). Acta Cryst. A38, 632–641CrossRefGoogle Scholar
  10. Hauptman, H.A., Potter, S. & Weeks, C.M. (1982). Acta Cryst. A38, 294–300CrossRefGoogle Scholar
  11. Heinerman, J.J.L., Krabbendam, H., Kroon, J. & Spek, A.L. (1978). Acta Cryst. 447–450Google Scholar
  12. Hendrickson (1988). In “Crystallographic Computing 4” eds. Isaac & Taylor, pp. 97–108Google Scholar
  13. Karle, J. (1980) . Intern. J. of Quantum Chemistry 7 357–367Google Scholar
  14. Karle, J. (1984). Acta Cryst. A40, 374–379CrossRefGoogle Scholar
  15. Klop, E.A., Krabbendam, H. & Kroon, J. (1986). Collected Abstracts, ECM10, Wroclaw, Poland, 3D-15Google Scholar
  16. Klop, E.A., Krabbendam, H. & Kroon, J. (1987). Acta Cryst. A43, 810–820CrossRefGoogle Scholar
  17. Klop, E.A., Krabbendam, H. & Kroon, J. (1989) Klop, E.A. (1989) . Thesis University of Utrecht.Google Scholar
  18. Kroon, J., Spek, A.L. & Krabbendam, H. (1977). Acta Cryst. A33, 382–385CrossRefGoogle Scholar
  19. Peerdeman, A.F., Bijvoet, J.M. (1956). Proc. Koninkl. Ned. Akad. Wetenschap. B59,Google Scholar
  20. Singh, A.K. & Ramaseshan, S. (1968). Acta Cryst. B24, 35–39CrossRefGoogle Scholar
  21. Templeton, L.K., Templeton, D.H., Phizackerly, R.P. & Hodgson, K.O. (1982). Acta Cryst. A38, 74–78CrossRefGoogle Scholar
  22. Unangst, D., Müller, E., Müller, J. & Keinert, B. (1967). Acta Cryst. 23, 898–901CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • H. Krabbendam
    • 1
  1. 1.Rijksuniversiteit UtrechtThe Netherlands

Personalised recommendations