Maximum Entropy and the Saddlepoint Method

  • Gérard Bricogne
Part of the NATO ASI Series book series (NSSB, volume 274)


The purpose of this second talk is to examine in detail the nature of the relation between the traditional formulation of probabilistic direct methods, their maximum-entropy reformulation, and the saddlepoint method. Most of the material in this talk has already appeared in the literature (Bricogne, 1984, 1988a, 1988b) but it is hoped that the choice and presentation adopted here will make the main results stand out clearly.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barakat, R. (1974). Opt. Acta 21, 903–921.CrossRefGoogle Scholar
  2. Bertaut, E.F. (1955a). Acta Cryst. 8, 537–543.CrossRefGoogle Scholar
  3. Bertaut, E.F. (1955b). Acta Cryst. 8, 544–548.CrossRefGoogle Scholar
  4. Bertaut, E.F. (1955c). Acta Cryst. 8, 823–832.CrossRefGoogle Scholar
  5. Bertaut, E.F. (1956a). Acta Cryst. 9, 322.Google Scholar
  6. Bertaut, E.F. (1956b). Acta Cryst. 9, 322–323.Google Scholar
  7. Bertaut, E.F. (1956c). Acta Cryst. 9,169–110. CrossRefGoogle Scholar
  8. Bertaut, E.F. (1959a). Acta Cryst. 12, 541–549.CrossRefGoogle Scholar
  9. Bertaut, E.F. (1959b). Acta Cryst. 12, 570–574.CrossRefGoogle Scholar
  10. Bertaut, E.F. & Waser, J. (1957). Acta Cryst. 10, 606–607.CrossRefGoogle Scholar
  11. Bhattacharya, R.N. & Ranga Rao, R. (1976). Normal Approximation and Asymptotic Expansions. New York : John Wiley & Sons.Google Scholar
  12. Bleistein, N. & Handelsman, R.A. (1986). Asymptotic Expansions of Integrals. New York : Dover Publications.Google Scholar
  13. Bricogne, G. (1984). Acta Cryst. A40, 410–445.CrossRefGoogle Scholar
  14. Bricogne, G. (1988a). Acta Cryst. A44, 517–545.CrossRefGoogle Scholar
  15. Bruijn, N.G. De (1970). Asymptotic Methods in Analysis. Amsterdam : North-Holland.Google Scholar
  16. Cramer, H. (1946). Mathematical Methods of Statistics. Princeton Univ. Press.Google Scholar
  17. Daniels, H.E. (1954). Ann. Math. Stat. 25, 631–650.CrossRefGoogle Scholar
  18. Fowler, R.H. (1936). Statistical Mechanics, 2nd edition Cambridge Univ. Press.Google Scholar
  19. Hauptman, H. & Karle, J. (1953). The Solution of the Phase Problem. L The Centrosym- metric Crystal. Am. Cryst. Assoc. Monogr. No. 3. Pittsburgh : Polycrystal Book Service.Google Scholar
  20. Hörmander, L. (1973). An Introduction to Complex Analysis in Several Variables, 2nd edition. Amsterdam : North-Holland.Google Scholar
  21. Jaynes, E.T. (1957). Phys. Rev. 106, 620–630.CrossRefGoogle Scholar
  22. Jaynes, E.T. (1968). Ieee Trans. Ssc-4, 227–241.Google Scholar
  23. Jaynes, E.T. (1983). Papers on Probability, Statistics and Statistical Physics. Dordrecht : Reidel Publ. Co.Google Scholar
  24. Khinchin, A.I. (1949). Mathematical Foundations of Statistical Mechanics. New York : Dover Publications.Google Scholar
  25. Klug, A. (1958). Acta Cryst. 11, 515–543.CrossRefGoogle Scholar
  26. Kluyver, J.C. (1906). K.Ned. Akad. Wet. Proc. 8, 341–350.Google Scholar
  27. Lebedev, N.N. (1972). Special Functions and their Applications. New York : DoverGoogle Scholar
  28. Lindley, D.V. (1965). Introduction to Probability and Statistics from a Bayesian Viewpoint, Vols. 1 and 2. Cambridge Univ. Press.CrossRefGoogle Scholar
  29. Paley, R.E.A.C. & Wiener, N. (1934). Fourier Transforms in the Complex Domain. Providence, R.I. : Amer. Math. Soc.Google Scholar
  30. Pearson, K. (1905). Nature, Lond. 72, 294, 342.CrossRefGoogle Scholar
  31. Petrov, V. V. (1975). Sums of Independent Random Variables. Berlin : Springer-Verlag.CrossRefGoogle Scholar
  32. Rayleigh (J.W. Strutt), Lord (1880). Phil. Mag. 10, 73–78.Google Scholar
  33. Rayleigh (J.W. Strutt), Lord (1899). Phil. Mag. 47, 246–251.CrossRefGoogle Scholar
  34. Rayleigh (J.W. Strutt), Lord (1905). Nature, Lond. 72, 318.CrossRefGoogle Scholar
  35. Rayleigh (J.W. Strutt), Lord (1918). Phil. Mag. 36, 429–449.CrossRefGoogle Scholar
  36. Rayleigh (J.W. Strutt), Lord (1919). Phil. Mag. 37, 321–347.CrossRefGoogle Scholar
  37. Rice, S.O. (1944, 1945). Bell System Tech. J. 23, 283–332 (parts I and Ii) ; 24, 46–156 (partsCrossRefGoogle Scholar
  38. Iii and Iv). Reprinted in Selected Papers on Noise and Stochastic Processes (1954), edited by N. Wax, pp. 133–294. New York : Dover Publications.Google Scholar
  39. Shannon, Ce, & Weaver, W. (1949). The Mathematical Theory of Communication. Urbana : Univ. of Illinois Press.Google Scholar
  40. Shmueli, U.& Weiss, G.H. (1985). Acta Cryst. A41, 401–408.CrossRefGoogle Scholar
  41. Shmueli, U.& Weiss, G.H. (1986). Acta Cryst. A42, 240–246.CrossRefGoogle Scholar
  42. Shmueli, U.& Weiss, G.H. (1987). Acta Cryst. A43, 93–98.CrossRefGoogle Scholar
  43. Shmueli, U.& Weiss, G.H. (1988). Acta Cryst. A44, 413–417.CrossRefGoogle Scholar
  44. Shmueli, Il, Weiss, G.H.& Kiefer, J.E. (1985). Acta Cryst. A41, 55–59.CrossRefGoogle Scholar
  45. Shmueli, U., Weiss, G.H., Kiefer, J.E. & Wilson, Aj.C. (1984). Acta Cryst. A40, 651–660.CrossRefGoogle Scholar
  46. Szegö, G. (1920). Math. Z. 6, 167–202.CrossRefGoogle Scholar
  47. Tsoucaris, G. (1970). Acta Cryst. A26, 492–499.CrossRefGoogle Scholar
  48. Wiener, N. (1949). Extrapolation, Interpolation and Smoothing of Stationary Time Series. Cambridge, Mass.: Mit Press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Gérard Bricogne
    • 1
  1. 1.Mrc Laboratory of Molecular BiologyCambridgeUK

Personalised recommendations