Advertisement

Structure Factor Algebra: Structure Invariants and Seminvariants

  • George M. Sheldrick
Chapter
Part of the NATO ASI Series book series (NSSB, volume 274)

Abstract

Structure factor algebra (Bertaut, 1956) provides a general method of incorporating space group symmetry into crystallographic programs. We shall consider some elementary applications, along the lines described by S.R. Hall at the 1970 Advanced Study Institute on Direct and Patterson Methods at Parma.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bertaut, E.F. (1956). Acta Cryst., 9, 769–770CrossRefGoogle Scholar
  2. Giacovazzo, C. (1974a, b). Acta Cryst., A30, 626–630 and 631–634CrossRefGoogle Scholar
  3. Gramaccioli, C.M. & Zechmeister, K. (1972). Acta Cryst., A28, 154–158CrossRefGoogle Scholar
  4. Hall, S.R. (1982). Acta Cryst., A38, 874–875CrossRefGoogle Scholar
  5. Hauptman, H. & Karle, J. (1953). Solution of the Phase Problem I. The Centrosymmetric Crystal. A.C.A. Monograph No. 3. Pittsburgh: Polycrystal Book ServiceGoogle Scholar
  6. Hauptman, H. & Karle, J. (1956). Acta Cryst., 9, 45–55CrossRefGoogle Scholar
  7. Lessinger, L. & Wondratschek, H. (1975). Acta Cryst., A31, 521CrossRefGoogle Scholar
  8. Parthé, E. & Gelato, L.M. (1984). Acta Cryst., A40, 169–183CrossRefGoogle Scholar
  9. Wilson, A.J.C. (1964). Acta Cryst., 17, 1591–1592CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • George M. Sheldrick
    • 1
  1. 1.Institut für Anorganische Chemie der UniversitätGöttingenFederal Republic of Germany

Personalised recommendations