Advertisement

Introduction to Maximum Entropy

  • Gérard Bricogne
Chapter
Part of the NATO ASI Series book series (NSSB, volume 274)

Abstract

The Maximum Entropy Method (MEM) is not a completely different approach from Conventional Direct Methods (CDM) : it is an improvement of the latter at the level of the techniques of Analytic Probability Theory on which they are based.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blow, D.M. & Crick, F.H.C. (1959). Acta Cryst. A12, 794–802.CrossRefGoogle Scholar
  2. Bricogne, G. (1984). Acta Cryst. A40, 410–445.CrossRefGoogle Scholar
  3. Bricogne, G. (1988a). Acta Cryst. A44, 517–545.CrossRefGoogle Scholar
  4. Bricogne, G. (1988b). In Crystallographic Computing 4 , edited by N.W. Isaacs & M.R. Taylor, pp. 60–79. New York: Oxford Univ. Press.Google Scholar
  5. Bricogne, G. & Gilmore, CJ. (1990). Acta Cryst. A46, 284–297.CrossRefGoogle Scholar
  6. Carter, C.W.Jr., Crumley, K.V., Coleman, D.E., Hage, F. & Bricogne, G. (1990). Acta Cryst. A46, 57–68.CrossRefGoogle Scholar
  7. Cochran, W. & Woolfson, M.M. (1955). Acta Cryst. 8, 1–12.CrossRefGoogle Scholar
  8. Giacovazzo, C. (1980). Direct Methods in Crystallography. London: Academic Press.Google Scholar
  9. Gilmore, C.J. (1984). J. Appl. Cryst. 17, 42–46.CrossRefGoogle Scholar
  10. Gilmore, C.J., Bricogne, G. & Bannister, C. (1990). Acta Cryst. A46, 297–308.CrossRefGoogle Scholar
  11. Gilmore, C.J. & Brown, S.R. (1988). J. Appl. Cryst. 22, 571–572.CrossRefGoogle Scholar
  12. Goedkoop, J.A. (1950). Acta Cryst. 3, 374–378.CrossRefGoogle Scholar
  13. Harker, D. (1953). Acta Cryst. 6, 731–736.CrossRefGoogle Scholar
  14. Hauptman, H. (1975). Acta Cryst. A30, 472–476.CrossRefGoogle Scholar
  15. Hauptman, H. (1980). In Theory and Practice of Direct Methods in Crystallography, edited by M.C.F. Ladd & R.A. Palmer, pp. 151–197. New York: Plenum.CrossRefGoogle Scholar
  16. Hauptman, H. & Karle, J. (1953). The Solution of the Phase Problem. I. The Centrosymmetric Crystal. Am. Crystalogr. Assoc. Monogr. No. 3. Pittsburgh: Polycrystal Book Service.Google Scholar
  17. Kirkpatrick, S., Gelatt, C.D.Jr. & Vecchi, M.P. (1983). Science 220, 671–680.CrossRefGoogle Scholar
  18. Lindley, D.V. (1965). Introduction to Probability and Statistics from a Bayesian Viewpoint, Vols. 1 and 2. Cambridge Univ. Press.CrossRefGoogle Scholar
  19. Main, P. (1977). Acta Cryst. A33, 750–757.CrossRefGoogle Scholar
  20. Neyman, J. & Pearson, E. (1933). Phil. Trans. Roy. Soc. A231, 289–337.CrossRefGoogle Scholar
  21. Nilsson, N.J. (1971). Problem-Solving Methods in Artificial Intelligence. New York: McGraw-Hill.Google Scholar
  22. Rice, S.O. (1944, 1945). Bell System Tech. J. 23, 283–332 (parts I and II) ; 24, 46–156 (parts III and IV). Reprinted in Selected Papers on Noise and Stochastic Processes (1954), edited by N. WAX, pp. 133–294. New York : Dover Publications.Google Scholar
  23. Shannon, CE. & Weaver, W. (1949). The Mathematical Theory of Communication. Urbana: Univ. of Illinois Press.Google Scholar
  24. Thorpe, E.O. (1966). Beat the Dealer. New York: Vintage Books.Google Scholar
  25. White, P.S. & Woolfson, M.M. (1975). Acta Cryst. A31, 53–56.CrossRefGoogle Scholar
  26. Wilson, A.J.C. (1949). Acta Cryst. 2, 318–321.CrossRefGoogle Scholar
  27. Wilson, A.J.C. (1950). Acta Cryst. 3, 258–261.CrossRefGoogle Scholar
  28. Woolfson, M.M. (1987). Acta Cryst. A43, 593–612.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Gérard Bricogne
    • 1
    • 2
  1. 1.MRC Laboratory of Molecular BiologyCambridgeUK
  2. 2.LUREOrsayFrance

Personalised recommendations