Recent Advances in Diffraction Analysis of Reflector Antennas

  • Y. Rahmat-Samii


Reflector antenna configurations have evolved considerably in the last decade. For example, a reflector antenna configuration envisioned for future satellite communications is shown in Fig. 1. This antenna system utilizes a dual offet reflector antenna with the following characteristics: (a) the main reflector is mesh deployable, (b) the subreflector is made of multi-layered frequency selective surfaces (FSS), (c) a deployable mast is shown to support the subreflector, (d) there are complex conformai array feeds operating at different frequency bands, and (e) adaptive beam forming networks (BFN) with reconfigurable functionality are used. This antenna system architecture is envisioned to fulfill the demanding requirements imposed upon the future - generation antenna systems. Some of the key design aspects of these future-generation antenna systems are high gain, low sidelobes, low cross polarization, multi-frequency operation and scanning beam capabilities. Clearly, sophisticated and advanced analytical/numerical and measurement techniques are required to accurately and properly assess the performance characteristics of this type of an antenna configuration.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Y. Rahmat-Samii, “Large Antenna Measurement and Compensation Techniques,” 11th ESTEC Antenna Workshop on Antenna Measurements, pp. 57–68, Gothenburg, Sweden, June 1988.Google Scholar
  2. [2]
    Y. Rahmat-Samii, “Useful Coordinate Transformations for Antenna Applications,” IEEE Trans. Antennas Propagat,, vol AP-27, pp. 571–574, July 1979.ADSCrossRefGoogle Scholar
  3. [3]
    D. W. Duan and Y. Rahmat-Samii, “Antennas for High Power Microwave Applications-Part I,” UCLA Report No. Eng-90–21, Sept. 1990.Google Scholar
  4. [4]
    A. G. Roederer and Y. Rahmat-Samii, “Unfurable Satellite Antennas,” Annales des Telecommunications, vol. 44, pp. 475–483, Nov. 1989.Google Scholar
  5. [5]
    M. I. Astrakhan, “Reflection and Screening Properties of Plane Wire Grids,” Radio Eng., (Moscow), vol. 23, pp. 76–83, 1968.Google Scholar
  6. [6]
    Y. Rahmat-Samii and S. W. Lee, “Vector Diffraction Analysis of Reflector Antennas with Mesh Surfaces,” IEEE Trans. Antennas Propagat., vol. AP-33, pp. 76–90, Jan., 1985.ADSCrossRefGoogle Scholar
  7. [7]
    J. R. Wait, Electromagnetic Scattering, P. L. E. Uslenghi (editor), New York: Academic Press, 1987.Google Scholar
  8. [8]
    Y. Rahmat-Samii, W. Imbriale and V. Galindo, “Reflector Antennas with Mesh Surfaces: Contact or no Contact at Wire Intersections?,” 1989 IEEE AP-S Int. Symp., San Jose, CA, June 26–30, 1989.Google Scholar
  9. [9]
    Y. Rahmat-Samii, “Reflector Antennas,”. Y. T. Lo and S-W Lee (editors), Antenna Handbook, chapter 15. New York: Van Nostrand Reinhold Company, 1988.Google Scholar
  10. [10]
    W.V.T. Rusch, “The Current State of the Reflector Antenna Art,” Antennas Propagat., vol. AP-32, pp. 313–329, April 1984.ADSCrossRefGoogle Scholar
  11. [11]
    Y. Rahmat-Samii, “Jacobi-Bessel Analysis of Reflector Antennas with Elliptical Apertures,” IEEE Trans. Antennas Propagat., vol. AP-35, pp. 1070–1073, Sept. 1987.ADSCrossRefGoogle Scholar
  12. [12]
    C. S. Hung and R. Mittra, “Secondary Pattern and Focal Region Distribution of Reflector Antennas Under Wide-Angle Scanning,” IEEE Trans. Antennas Propagat., vol. AP-31, pp. 99–103, Sept. 1983.ADSCrossRefGoogle Scholar
  13. [13]
    C. S. Kim and Y. Rahmat-Samii, “Analysis of Antennas with Elliptical Apertures using Fourier-Bessel Expansion: A Comparative Study,” S. A. Kong (editor), Pro gress in Electromagnetics Research, vol. 4, New York: Elsevier Science Publishing, 1990.Google Scholar
  14. [14]
    D. W. Duan and Y. Rahmat-Samii, “Comments on Numerical Evaluation of Radiation Integrals for Reflector Antenna Analysis Including a New Measure of Accuracy,” IEEE Trans. Antennas Propagat., to be published, May 1991.Google Scholar
  15. [15]
    A. W. Love, (editor), Reflector Antennas, New York: IEEE Press, 1978.Google Scholar
  16. [16]
    J. B. Keller, “Geometrical Theory of Diffraction,” J. Opt. Soc. of America, vol. 52, pp. 116–130, Feb. 1962.ADSCrossRefGoogle Scholar
  17. [17]
    D. S. Ahluwalia, R. M. Lewis and J. Boersma, “Uniform Asymptotic Theory of Diffraction by a Plane Screen,” SIAM J. Appl. Math., vol. 16, pp. 783–807, 1968.CrossRefMathSciNetGoogle Scholar
  18. [18]
    S.-W. Lee and G. A. Deschamps, “A Uniform Asymptotic Theory of Electromagnetic Diffraction by a Curved Wedge,” IEEE Trans. Antennas Propagat., vol. AP-24, pp. 25–34, Jan. 1976.ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    R. G. Kouyoumjian and P. H. Pathak, “A Uniform Geometrical Theory of Diffraction for an Edge in a Perfectly Conducting Surface,” Proc. IEEE, vol. 62, pp. 1448–1461, Nov, 1974.ADSCrossRefGoogle Scholar
  20. [20]
    T. S. Chu, “An Imaging Beam Waveguide Feed,” IEEE Trans. Antennas Propagat., vol. AP-31, pp. 614–619, July 1983.ADSCrossRefGoogle Scholar
  21. [21]
    P. Y. Ufimtsev, “Method of Edge Waves in the Physical Theory of Diffraction,” Izd-Vo Sovyetskoye Radio, pages 1–243, 1962. Translation prepared by the U. S. Air Force Foreign Technology Division Wright-Patterson, AFB, Ohio (1971), available from NTIS, Springfield, VA 22161, AD733203.Google Scholar
  22. [22]
    K. M. Mitzner, “Incremental Length Diffraction Coefficients,” Technical Report AFAL-TR-73–296, Aircraft Division Northrop Corp., April 1974.Google Scholar
  23. [23]
    A. Michaeli, “Elimination of Infinities in Equivalent Edge Currents, part I: Fringe Current Components”. IEEE Trans. Antennas Propagat., vol. AP-34, pp. 912–918, July 1986.ADSCrossRefGoogle Scholar
  24. [24]
    M. Ando, “Radiation Pattern Analysis of Reflector Antennas,” Electronics and Communications in Japan, Part I, vol. 68, pp. 93–102, 1985.ADSCrossRefGoogle Scholar
  25. [25]
    S.-W. Lee, “Uniform Asymptotic Theory of Electromagnetic Edge Diffraction: A Review,” P. L. E. Uslenghi, (editor), Electromagnetic Scattering, pp. 67–119, New York: Academic Press, 1978.Google Scholar
  26. [26]
    Y. Rahmat-Samii and R. Mittra, “Spectral Analysis of High Frequency Diffraction of an Arbitrary Incident Field by a Half Plane — Comparison With Four Asymptotic Techniques,” Radio Science, vol. 13, pp. 31–48, Jan.-Feb. 1978.ADSCrossRefGoogle Scholar
  27. [27]
    Y. Rahmat-Samii, P. O. Iverson and D. W. Duan, “GTD, PO, PTD and Gaussian Beam Diffraction Analysis Techniques Applied to Reflector Antennas,” to be published in ACES Journal, in 1991.Google Scholar
  28. [28]
    Y. Rahmat-Samii, “Effects of Deterministic Surface Distortions on Reflector Antenna Performance,” Annales Des Telecommunications, Vol. 40, No. 7–8, pp. 350–360, August 1985.ADSGoogle Scholar
  29. [29]
    Y. Rahmat-Samii, “Array Feed for Reflector Surface Distortion Compensation: Concepts and Implementation,” IEEE AP-S magazine, vol. 32, pp. 20–26, Aug. 1990.ADSGoogle Scholar
  30. [30]
    Y. Rahmat-Samii, “Surface Diagnosis of Large Reflector Antennas Using Microwave Holographic Metrology: An Iterative Approach,” Radio Science, vol. 19, pp. 1205–1217, Sept.-Oct. 1984.ADSCrossRefGoogle Scholar
  31. [31]
    Y. Rahmat-Samii, “Communicating From Space,” IEEE Potentials, pp. 31–35, October 1988.Google Scholar
  32. [32]
    C. F. Fraser, “Photogrammetric Measurement of Antenna Reflectors,” Antenna Measurement Techniques Association Meeting, pp. 374–379, Seattle, Washington, September 1987.Google Scholar
  33. [33]
    Y. Rahmat-Samii, “Improved Reflector Antenna Performance Using Optimized Feed Arrays,” Proc. of the 1989 URSI International Symposium on Electromagnetic Theory, Stockholm, Sweden, August 14–17, 1989, pp. 559–561.Google Scholar
  34. [34]
    Y. Rahmat-Samii and D. Chueng, “Nonuniform Sampling Techniques for Antenna Applications,” IEEE Trans. Antennas Propagat., vol. 35, pp. 268–279, March 1987.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Y. Rahmat-Samii
    • 1
  1. 1.Electrical Engineering DepartmentUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations