Modeling for Waves in Random Media — A Need for Analytical, Numerical and Experimental Investigations

  • Akira Ishimaru


This paper first presents the state of the art in the modeling of waves in random media including waves in turbulence, waves in discrete scatterers, and rough surface scattering. Secondly, we emphasize the need for interplay among analytical, numerical, and experimental investigations. Weak localization, coherent backscattering, and enhanced backscattering from rough surfaces are used as examples of these interactive investigations that are essential in constructing new analytical models and in uncovering underlying physical processes. Future directions in this field include basic theoretical studies on waves in dense media, disordered media, and nonlinear and inverse problems as well as applications in remote sensing, surface physics, geosciences, biomedical sciences, communications, and imaging.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Ishimaru, Wave Propagation and Scattering in Random Media, New York, Academic Press, 1978.Google Scholar
  2. [2]
    V. I. Tatarskii, “The Effects of the Turbulent Atmosphere on Wave Propagation,” U.S. Department of Commerce, TT-68–50464, Springfield, Virginia, 1971.Google Scholar
  3. [3]
    J. W. Strohbehn, editor, Laser Beam Propagation in the Atmosphere, New York, Springer Verlag, 1978.Google Scholar
  4. [4]
    B. J. Uscinski, The Elements of Wave Propagation in Random Media, New York, McGraw-Hill, 1977.Google Scholar
  5. [5]
    S. M. Flatté, Sound Transmission Through a Fluctuating Ocean, London, Cambridge University Press, 1979.Google Scholar
  6. [6]
    L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing, Wiley-Interscience, 1985.Google Scholar
  7. [7]
    S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics, vol. I — IV, Berlin, Springer-Verlag, 1987.CrossRefzbMATHGoogle Scholar
  8. [8]
    U. Frisch, “Wave propagation in random media,” in Probabilistic Methods in Applied Mathematics, New York, Academic Press, 1968.Google Scholar
  9. [9]
    F. G. Bass and I. M. Fuks, Wave Scattering from Statistically Rough Surfaces, Oxford, Pergamon Press, 1979.Google Scholar
  10. [10]
    P. Beckmann and A. Spizzichino, Scattering of Electromagnetic Waves from Rough Surfaces, New York, Pergamon, 1963.zbMATHGoogle Scholar
  11. [11]
    J. A. DeSanto and G. S. Brown, “Analytical techniques for multiple scattering from rough surfaces” in Progress in Optics XXIII, editor, E. Wolf, Elsevier Science Publishers B.V., 1986.Google Scholar
  12. [12]
    M. Nieto-Vesperinas and J. C. Dainty, editors, Scattering in Volumes and Surfaces, Amsterdam, North-Holland, 1990.Google Scholar
  13. [13]
    V. V. Varadan and V. K. Varadan, editors, Multiple Scattering of Waves in Random Media and Random Rough Surfaces, Pennsylvania State University, 1987.Google Scholar
  14. [14]
    H. C. van de Hulst, Multiple Scattering, New York, Academic Press, 1980.Google Scholar
  15. [15]
    P. L. Chow, W. E. Kohler, and G. C. Papanicolaou, Multiple Scattering and Waves in Random Media, North-Holland, 1981.zbMATHGoogle Scholar
  16. [16]
    J. B. Keller, “Stochastic equations and wave propagation in random media,” Proc. Symp. Applied Math, 16, pp. 145–170, 1964.CrossRefGoogle Scholar
  17. [17]
    A. Ishimaru, “Wave propagation and scattering in random media and rough surfaces,” Proc. IEEE Special Issue on Electromagnetics, editor, W. K. Kahn, 1991.Google Scholar
  18. [18]
    V. I. Tatarskii and V. U. Zavorotnyi, “Strong fluctuations in light propagation in a randomly inhomogeneous medium,” in Progress in Optics, vol. 18, editor, E. Wolf, pp. 204–256, Amsterdam, North-Holland, 1980.Google Scholar
  19. [19]
    K. Furutsu, “Intensity correlation functions of light waves in a turbulent medium: An exact version of the two-scale method,” Appl. Opt., vol. 27, pp. 2127–2144, 1988.ADSCrossRefGoogle Scholar
  20. [20]
    J. L. Codona, D. P. Creamer, S. M. Flatté, R. Frehlich, and F. Henyey, “Solutions for the fourth moment of a wave propagating in random media,” Radio Sci., vol. 21, pp. 929–948, 1986.ADSCrossRefGoogle Scholar
  21. [21]
    I. M. Besieris, “Wave-kinetic method, phase-space path integrals, and stochastic wave equations,” J. Opt. Soc. Am., vol. A-2, pp. 2092–2099, 1985.ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    J. M. Martin, S. M. Flatté, “Intensity images and statistics from numerical simulation of wave propagation in three-dimensional random media,” Appl. Opt., vol. 27, no. 11, pp. 2111–2126, 1988.ADSCrossRefGoogle Scholar
  23. [23]
    M. Spivack and B. J. Uscinski, “Accurate numerical solution of the fourth-moment equation for very large values of G” J. Modern Optics, vol. 35, no. 11, pp. 1741–1755, 1988.ADSCrossRefGoogle Scholar
  24. [24]
    M. J. Beran and R. Mazar, “Intensity fluctuations in a quadratic channel,” J. Acoust. Soc. Am., vol. 82, no. 2, pp. 588–592, 1987.ADSCrossRefGoogle Scholar
  25. [25]
    C. L. Rino, “A spectral-domain method for multiple scattering in continuous randomly irregular media,” IEEE Trans. Antennas Propag., vol. 36, no. 8, pp. 1114–1128, 1988.ADSCrossRefGoogle Scholar
  26. [26]
    L. C. Andrews and R. L. Phillips, “Mathematical genesis of the I-K distribution for random optical fields,” J. Opt. Soc. Am., vol. A-3, pp. 1912–1919, 1986.ADSCrossRefGoogle Scholar
  27. [27]
    E. Jakeman and P. N. Pusey, “Significance of K-distributions in scattering experiments,” Phys. Rev. Lett., vol. 40, pp. 546–550, 1978.ADSCrossRefGoogle Scholar
  28. [28]
    S. Chandrasekhar, Radiative Transfer, London, Oxford University Press, 1960.Google Scholar
  29. [29]
    G. W. Kattawar, G. N. Plass, and F. E. Catchings, “Matrix operator theory of radiative transfer,” Appl. Opt., vol. 12, pp. 1071–1084, 1973.ADSCrossRefGoogle Scholar
  30. [30]
    W. M. Boerner, editor, Inverse Methods in Electromagnetic Imaging, Dordrecht, Netherlands, D. Reidel, 1985.Google Scholar
  31. [31]
    J. J. van Zyl, H. A. Zebker, and C. Elachi, “Imaging radar polarization signatures: Theory and observations,” Radio Sci., vol. 22, pp. 529–543, 1987.ADSCrossRefGoogle Scholar
  32. [32]
    F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing, Reading, MA, Addison-Wesley, 1982.Google Scholar
  33. [33]
    K.-H. Ding and L. Tsang, “Effective propagation constants of a dense nontenuous media with multi-species of particles,” J. Electromagnetic Waves and Applications, vol. 2, no. 8, pp. 757–777, 1988.ADSGoogle Scholar
  34. [34]
    V. Twersky, “Low-frequency scattering by mixtures of correlated nonspherical particles,” J. Acoust. Soc. Am., vol. 84, no. 1, pp. 409–415, 1988.ADSCrossRefGoogle Scholar
  35. [35]
    Y. Kuga and A. Ishimaru, “Imaging of an object behind randomly distributed particles using coherent illumination,” J. Wave-Material Interaction, vol. 3, no. 2, pp. 105–112, 1988Google Scholar
  36. [36]
    A. Ishimaru, “Diffusion of light in turbid material,” Appl. Opt., vol. 28, no. 12, pp. 2210–2215, 1989.ADSCrossRefGoogle Scholar
  37. [37]
    A. Ishimaru, “Diffusion of a pulse in densely distributed scatterers,” J. Opt. Soc. Am., vol. 68, no. 8, pp. 1045–1050, 1978.ADSCrossRefGoogle Scholar
  38. [38]
    H. A. Yueh, R. T. Shin, and J. A. Kong, “Scattering from randomly perturbed periodic and quasiperiodic surfaces,” in Progress in Electromagnetic Research, editor, J. A. Kong, New York, Elsevier, 1989.Google Scholar
  39. [39]
    M. F. Chen and A. K. Fung, “A numerical study of the regions of validity of the Kirchhoff and small-perturbation rough surface scattering models,” Radio Sci., vol. 23, no. 2, pp. 163–170, 1988.ADSCrossRefGoogle Scholar
  40. [40]
    S. Ito, “Analysis of scalar wave scattering from slightly rough random surfaces: A multiple scattering theory,” Radio Sci., vol. 20, pp. 1–12, 1985.ADSCrossRefGoogle Scholar
  41. [41]
    J. G. Watson and J. B. Keller, “Rough surface scattering via the smoothing method,” J. Acoust. Soc. Am., vol. 75, pp. 1705–1708, 1984.ADSCrossRefzbMATHGoogle Scholar
  42. [42]
    D. P. Winebrenner and A. Ishimaru, “Application of the phase-perturbation technique to randomly rough surfaces,” J. Opt. Soc. Am., vol. 2, no. 12, pp. 2285–2294, 1985.ADSCrossRefGoogle Scholar
  43. [43]
    S. L. Broschat, L. Tsang, A. Ishimaru, and E. I. Thorsos, “A numerical comparison of the phase perturbation technique with the classical field perturbation and Kirchhoff approximations for random rough surface scattering,” J. Electromagnetic Waves and Applications, vol. 2, no. 1, pp. 85–102, 1987.ADSGoogle Scholar
  44. [44]
    E. Bahar and M. A. Fitzwater, “Full wave theory and controlled optical experiments for enhanced scatter and depolarization by randomly rough surfaces,” Opt. Commun., vol. 63, pp. 355–360, 1987.ADSCrossRefGoogle Scholar
  45. [45]
    W. G. Egan and T. W. Hilgeman, Optical Properties of Inhomogeneous Materials, New York, Academic Press, 1979.Google Scholar
  46. [46]
    K. Watson, “Multiple scattering of electromagnetic waves in an underdense plasma,” J. Math. Phys., vol. 10, pp. 688–702, 1969.ADSCrossRefGoogle Scholar
  47. [47]
    Yu. A. Kravtsov and A. I. Saichev, “Effects of double passage of waves in randomly inhomogeneous media,” Sov. Phys. Usp., vol. 25, pp. 494–508, 1982.ADSCrossRefGoogle Scholar
  48. [48]
    Y. Kuga and A. Ishimaru, “Retroreflectance from a dense distribution of spherical particles,” J. Opt. Soc. Am. A, vol. 1. no. 8, pp. 831–835, 1984.ADSCrossRefGoogle Scholar
  49. [49]
    L. Tsang and A. Ishimaru, “Backscattering enhancement of random discrete scatterers,” J. Opt. Soc. Am. A, vol. 1, no. 8, pp. 836–839, 1984.ADSCrossRefGoogle Scholar
  50. [50]
    P. E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett., vol. 55, pp. 2696–2699, 1985.ADSCrossRefGoogle Scholar
  51. [51]
    E. Akkermans, P. E. Wolf, R. Maynard, and G. Maret, “Theoretical study of the coherent backscattering of light by disordered media,” J. Phys. France, vol. 49, pp. 77–98, 1988.ADSCrossRefGoogle Scholar
  52. [52]
    M. P. Van Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett., vol. 55, pp. 2692–2695, 1985.ADSCrossRefGoogle Scholar
  53. [53]
    P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev., vol. 109, pp. 1492–1505, 1958.ADSCrossRefGoogle Scholar
  54. [54]
    P. W. Anderson, “The questions of classical localization, A theory of white paint?” Philos. Mag. B, vol. 52, pp. 505–509, 1985.ADSCrossRefGoogle Scholar
  55. [55]
    K. A. O’Donnell and E. R. Mendez, “Experimental study of scattering from characterized random surfaces,” J. Opt. Soc. Am. A, vol. 4, pp. 1194–1205, 1987.ADSCrossRefGoogle Scholar
  56. [56]
    A. Ishimaru and J. S. Chen, “Scattering from very rough surfaces based on the modified second-order Kirchhoff approximation with angular and propagation shadowing,” J. Acoust. Soc. Am., to appear 1990.Google Scholar
  57. [57]
    A. Ishimaru, editor, Feature issue on “Wave Propagation and Scattering in Random Media,” J. Opt. Soc. Am., vol. 2, no. 12, pp. 2066–2348, 1985.ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Akira Ishimaru
    • 1
  1. 1.Department of Electrical EngineeringUniversity of WashingtonSeattleUSA

Personalised recommendations