Advertisement

Integral Equation Analysis of Microwave Integrated Circuits

  • Krzysztof A. Michalski

Abstract

Most of the analysis methods presently available for the analysis of microstrip structures are either limited to or optimized for planar geometries with simple, regular shapes.14 The modern microwave and millimeter-wave integrated circuits, however, cannot always be considered planar and they are usually far from being simple.56 Therefore, it is increasingly important to have at one’s disposal techniques, which would make it possible to accurately and rigorously analyze more complex circuit geometries. In this paper, we describe an integral equation approach, which we find especially suitable for this task.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Itoh, ed., Planar Transmission Line Structures. New York: IEEE Press, 1987.Google Scholar
  2. 2.
    K. C. Gupta and A. Benalla, eds., Microstrip Antenna Design. Norwood, MA: Artech House, 1988.Google Scholar
  3. 3.
    T. Itoh, ed., Numerical Techniques for Microwave and Millimeter-Wave Passive Structures. New York: Wiley, 1989.Google Scholar
  4. 4.
    R. Sorrentino, ed., Numerical Methods for Passive Microwave and Millimeter Wave Structures. New York: IEEE Press, 1989.Google Scholar
  5. 5.
    R. K. Hoffmann, Handbook of Microwave Integrated Circuits. Norwood, MA: Artech House, 1987.Google Scholar
  6. 6.
    I. Bahl and P. Bhartia, eds., Microwave Solid State Circuit Design. New York: Wiley, 1988.Google Scholar
  7. 7.
    L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves. Englewood Cliffs, N.J.: Prentice Hall, 1973.Google Scholar
  8. 8.
    K. A. Michalski, “The mixed-potential electric field integral equation for objects in layered media,” Arch. Elek. Übertragung., vol. 39, pp. 317–322, Sept.-Oct. 1985.Google Scholar
  9. 9.
    K. A. Michalski and D. Zheng, “Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, Part I: Theory,” IEEE Trans. Antennas Propagat., vol. 38, pp. 335–344, Mar. 1990.ADSCrossRefGoogle Scholar
  10. 10.
    N. K. Das and D. M. Pozar, “A generalized spectral-domain Green’s function for multilayer dielectric substrates with application to multilayer transmission lines,” IEEE Trans. Microwave Theory Techn., vol. MTT-35, pp. 326–335, Mar. 1987.ADSCrossRefGoogle Scholar
  11. 11.
    L. Vegni, R. Cicchetti, and P. Capece, “Spectral dyadic Green’s function formulation for planar integrated structures,” IEEE Trans. Antennas Propagat., vol. 36, pp. 1057–1065, Aug. 1988.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    R. Kastner, E. Heyman, and A. Sabban, “Spectral domain iterative analysis of single- and double-layered microstrip antennas using the conjugate gradient algorithm,” IEEE Trans. Antennas Propagat., vol. 36, pp. 1204–1212, Sept. 1988.ADSCrossRefGoogle Scholar
  13. 13.
    Y. T. Lo, S. M. Wright, and M. Davidovitz, “Microstrip antennas,” in Handbook of Microwave and Optical Components (K. Chang, ed.), vol. 1, pp. 764–888, New York: Wiley, 1989.Google Scholar
  14. 14.
    A. A. Oliner, “Leakage from higher modes on microstrip line with application to antennas,” Radio Sci., vol. 22, pp. 907–912, Nov. 1987.ADSCrossRefGoogle Scholar
  15. 15.
    A. W. Glisson and D. R. Wilton, “Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces,” IEEE Trans. Antennas Propagat., vol. AP-28, pp. 593–603, Sept. 1980.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propagat., vol. AP-30, pp. 409–418, May 1982.ADSCrossRefGoogle Scholar
  17. 17.
    K. A. Michalski and D. Zheng, “Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, Part II: Implementation and results for contiguous half-spaces,” IEEE Trans. Antennas Propagat., vol. 38, pp. 345–352, Mar. 1990.ADSCrossRefGoogle Scholar
  18. 18.
    K. A. Michalski and D. Zheng, “Rigorous analysis of open microstrip lines of arbitrary cross-section in bound and leaky regimes,” IEEE Trans. Microwave Theory Techn., vol. 37, pp. 2005–2010, Dec. 1989.ADSCrossRefGoogle Scholar
  19. 19.
    D. Zheng and K. A. Michalski, “Analysis of arbitrarily shaped coax-fed microstrip antennas—A hybrid mixed-potential integral equation approach,” Microwave & Opt. Techn. Lett., vol. 3, pp. 200–203, June 1990.ADSCrossRefGoogle Scholar
  20. 20.
    A. M. A. El-Sherbiny, “Hybrid mode analysis of microstrip lines on anisotropic substrates,” IEEE Trans. Microwave Theory Techn., vol. MTT-29, pp. 1261–1266, Dec. 1981.ADSCrossRefGoogle Scholar
  21. 21.
    C. C. Su, “A combined method for dielectric waveguides using the finite-element technique and the surface integral equation method,” IEEE Trans. Microwave Theory Techn., vol. MTT-34, pp. 1140–1146, Nov. 1986.ADSCrossRefGoogle Scholar
  22. 22.
    X. Yuan, D. R. Lynch, and J. W. Strohbehn, “Coupling of finite element and moment methods for electromagnetic scattering from inhomogeneous objects,” IEEE Trans. Antennas Propagat., vol. 38, pp. 386–393, Mar. 1990.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Krzysztof A. Michalski
    • 1
  1. 1.Department of Electrical EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations