Advertisement

On The Modeling of Printed Circuits and Antennas on Curved Substrates

  • Akifumi Nakatani
  • N. G. Alexopoulos

Abstract

In many practical applications, non-planar circuit and antenna structures are conformal to cylindrical shapes. These coordinate systems are to be used to analyze applications of microstrip to antennas on curved surface, transition adapters, and baluns. A brief historical development for microstrip on cylindrical geometries is given in this section.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Quasi-static Models:Microstrip Lines

  1. 1.
    Y. Wang, “Cylindrical and Cylindrically Warped Strip and Microstriplines,” IEEE Trans, Microwave Theory Tech., VOL. MTT-26, NO. 1, pp. 20–23, January 1978.ADSCrossRefGoogle Scholar
  2. 2.
    K. K. Joshi and B. N. Das, “Analysis of Elliptic and Cylindrical Striplines Using Laplace’s Equation,” IEEE Trans, Microwave Theory Tech., VOL. MTT-28, NO. 4, pp. 381–386, April 1980.ADSCrossRefGoogle Scholar
  3. 3.
    L. Zeng and Y. Wang, “Accurate Solutions of Elliptical and Cylindrical Striplines and Microstrip Lines,” IEEE Trans, Microwave Theory Tech., VOL. MTT-34, NO. 2, pp. 259–265, February 1986.ADSCrossRefMathSciNetGoogle Scholar
  4. 4.
    C. J. Reddy and M. D. Deshpande, “Analysis of Cylindrical Stripline with Multilayer Dielectrics,” IEEE Trans, Microwave Theory Tech., VOL. MTT-34, NO. 6, pp. 701–706, June 1986.ADSCrossRefGoogle Scholar
  5. 5.
    C. H. Chan and R. Mittra, “Analysis of a Class of Cylindrical Multiconduc-tor Transmission Lines Using an Iterative Approach,” IEEE Trans, Microwave Theory Tech., VOL. MTT-35, NO. 4, pp. 415–424, April 1987.ADSCrossRefGoogle Scholar
  6. 6.
    C. J. Reddy and M. D. Deshpande, “Analysis of Coupled Cylindrical Striplines Filled with Multilayered Dielectrics,” IEEE Trans, Microwave Theory Tech., VOL. MTT-36, NO. 9, pp. 1301–1310, September 1988.ADSCrossRefGoogle Scholar
  7. 7.
    F. Medina and M. Horno, “Spectral and Variational Analysis of Generalized Cylindrical and Elliptical Strip and Microstrip Lines,” IEEE Trans, Microwave Theory Tech., VOL. MTT-38, NO. 9, pp. 1287–1293, September 1990. Frequency Dependent Models:Microstrip LinesADSCrossRefGoogle Scholar
  8. 8.
    N. G. Alexopoulos and A. Nakatani, “Cylindrical Substerate Microstrip Line Characterization,” IEEE Trans, Microwave Theory Tech., VOL. MTT-35, NO. 9, pp. 843–849, September 1987.ADSCrossRefGoogle Scholar
  9. 9.
    A. Nakatani and N. G. Alexopoulos, “Coupled Microstrip Lines on a Cylindrical Substrate,” IEEE Trans, Microwave Theory Tech., VOL. MTT-35, NO. 12, pp. 1392–1398, December 1987.ADSCrossRefGoogle Scholar

Microstrip Antennas on a Cylindrical Structure

  1. 10.
    R. E. Munson, “Conformai Microstrip Antennas and Microstrip Phased Arrays,” IEEE Trans, Antennas Propagat., VOL. AP-22, NO. 1, pp. 74–77, January 1974.ADSCrossRefGoogle Scholar
  2. 11.
    C.M. Krowne, “Cylindrical-Rectangular Microstrip Antenna,” IEEE Trans, Antennas Propagat., VOL. AP-31, NO. 1, pp. 194–199, January 1983.ADSCrossRefGoogle Scholar
  3. 12.
    S. B. Fonseca and A. J Ciarola, “Analysis of Microstrip Wraparound Antennas Using Dyadic Green’s Functions,” IEEE Trans, Antennas Propagat., VOL. AP-31, NO. 2, pp. 248–253, March 1983.ADSCrossRefGoogle Scholar
  4. 13.
    N. G. Alexopoulos, P. L. E. Uslenghi, and N. K. Uzunoglu, “Microstrip Dipoles on Cylindrical Structures,” Electromagnetics, VOL. 3, pp. 311–326, 1983.CrossRefGoogle Scholar
  5. 14.
    J. Ashkenazy, S. Shtrikman, and D. Treves, “Electric Surface Model for the Analysis of Microstrip Antennas on Cylindrical Bodies,” IEEE Trans, Antennas Propagat, VOL. AP-33, NO. 3, pp. 295–300, March 1985.ADSCrossRefGoogle Scholar
  6. 15.
    A. Nakatani, N. G. Alexopoulos, N. K. Uzunoglu, and P. L. E. Uslenghi, “Accurate Green’s Function Computation for Printed Circuit Antennas on Cylindrical Substrates,” Electromagnetics, VOL. 6, pp. 243–254, 1986.CrossRefGoogle Scholar
  7. 16.
    E. V. Sohtell, “Microwave Antennas on Cylindrical Structures,” Ph.D Dissertation, Chalmers University of Technology, Göteborg, Sweden 1988.Google Scholar
  8. 17.
    A. Nakatani, “Microstrip Circuits and Antennas on Cylindrical Substrates,” Ph.D Dissertation, University of California, Los Angeles, USA 1988.Google Scholar
  9. 18.
    A. Nakatani and N. G. Alexopoulos “Microstrip Elements on Cylindrical Substrates — General Algorithm and Numerical Results — Invited Paper,” Electromagnetics, VOL. 9, pp. 405–426, 1989.CrossRefGoogle Scholar
  10. 19.
    K. Luk and K. Lee, “Characteristics of the Cylindrical-Circular Patch Antennas,” IEEE Trans, Antennas Propagat., VOL. AP-38, NO. 7, pp. 1119–1123, July 1990.ADSCrossRefGoogle Scholar
  11. 20.
    T. M. Habashy, S. M. Ali, and J. A. Kong, “Input Impedance and Radiation Pattern of Cylindrical-Rectangular and Wraparound Microstrip Antennas,” IEEE Trans, Antennas Propagat, VOL. AP-38, NO. 5, pp. 722–731, May 1990.ADSCrossRefGoogle Scholar

Microstrip Resonator on Cylindrical Structure

  1. 21.
    S. M. Ali, T. M. Habashy, J. Kiang, J. A. Kong, “Resonance in Cylindrical-Rectangular and Wraparound Microstrip Structures,” IEEE Trans, Microwave Theory Tech., VOL. MTT-37, NO. 11, pp. 1773–1783, Novenber 1989.ADSCrossRefGoogle Scholar

Other References

  1. 22.
    R. F. Harrington, Time-Harmonic Electromagnetic Fields, McGraw-Hill Book Company, 1961.Google Scholar
  2. 23.
    R. S. Elliott, Antenna Theory and Design, Englewood Cliffs, N.J.: Prentice-Hall, 1981.Google Scholar
  3. 24.
    P. B. Katehi “A Generalized Solution to a Class of Printed Circuit Antennas,” Ph.D Dissertation, University of California, Los Angeles, USA 1984.Google Scholar
  4. 25.
    D. R. Jackson and N. G. Alexopoulos, “Gain Enhancement Methods for Printed Circuit Antennas,” IEEE Trans, Antennas Propagat., VOL. AP-33, NO. 2, pp. 976–987, September 1985.ADSCrossRefGoogle Scholar
  5. 26.
    C. M. Krowne, “Determination of the Green’s Function in the Spectral Domain Using a Matrix Method: Application to Radiators or Resonators Immersed in a Complex Anisotropic Layered Medium,” IEEE Trans, Antennas Propagat., VOL. AP-34, NO. 2, pp. 247–253, February 1986.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  6. 27.
    M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions — with Formula, Graphs, and Mathematical Tables, New York, NY: Dover Publications, Inc. 1970.Google Scholar
  7. 28.
    I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Corrected and Enlarged Edittion by A. Jeffrey, New York, NY: Academic Press, Inc., 1980.zbMATHGoogle Scholar
  8. 29.
    G. N. Watson, A Treatice on the Theory of Bessel Functions, Second Edition, Cambridge University Press, 1941.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Akifumi Nakatani
    • 1
  • N. G. Alexopoulos
    • 2
  1. 1.Phraxos Research & Development Inc.Santa MonicaUSA
  2. 2.University of California, Los AngelesLos AngelesUSA

Personalised recommendations