State of the Art and Future Directions in Finite-Difference and Related Techniques in Supercomputing Computational Electromagnetics

  • Allen Taflove


The numerical modeling of electromagnetic (EM) phenomena can be a computationally intensive task. To date, the design and engineering of aerospace vehicles has been the primary application driving the development of large-scale methods in computational electromagnetics (CEM). Efforts in the area have been aimed primarily at minimizing the radar cross section (RCS) of aerospace vehicles. RCS minimization enhances the survivability of vehicles that are subjected to precision-targeted ordnance. The physics of RCS is determined by Maxwell’s equations and the constitutive properties of a vehicle’s materials. As a result, an interesting situation arises in which the effectiveness and cost of state-of-the-art aerospace systems in part depends upon the ability to develop an efficient engineering understanding of 120-year old equations that describe the propagation and scattering of EM waves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. F. Harrington, “Field Computation by Moment Methods,” Macmillan, New York (1968).Google Scholar
  2. 2.
    K. R. Umashankar, Numerical analysis of electromagnetic wave scattering and interaction based on frequency-domain integral equation and method of moments techniques, Wave Motion 10:493 (1988).CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    J. B. Keller, Geometrical theory of diffraction, J. Opt. Soc. Amer. 52:116 (1962).ADSCrossRefMathSciNetGoogle Scholar
  4. 4.
    R. G. Kouyoumjian and P. H. Pathak, A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface, Proc. IEEE 62:1448 (1974).ADSCrossRefGoogle Scholar
  5. 5.
    J. P. Brooks, K. K. Ghosh, E. Harrigan, D. S. Katz, and A. Taflove, Progress in Cray-based algorithms for computational electromagnetics, in: “Progress in Electromagnetics Research (PIER) 4 1,” T. Cwik, ed., Elsevier, New York (1991).Google Scholar
  6. 6.
    K. S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas Propagat. 14:302 (1966).ADSCrossRefzbMATHGoogle Scholar
  7. 7.
    A. Taflove and M. E. Brodwin, Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations, IEEE Trans. Microwave Theory Tech. 23:623 (1975).CrossRefGoogle Scholar
  8. 8.
    A. Taflove and M. E. Brodwin, Computation of the electromagnetic fields and induced temperatures within a model of the microwave-irradiated human eye, IEEE Trans. Microwave Theory Tech. 23:888 (1975).CrossRefGoogle Scholar
  9. 9.
    A. Taflove, Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic penetration problems, IEEE Trans. Electromagn. Comnat. 22:191 (1980).Google Scholar
  10. 10.
    G. Mur, Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations, IEEE Trans. Electromagn. Compat. 23:377 (1981).CrossRefGoogle Scholar
  11. 11.
    K. R. Umashankar and A. Taflove, A novel method to analyze electromagnetic scattering of complex objects, IEEE Trans. Electromagn. Compat. 24:397 (1982).CrossRefGoogle Scholar
  12. 12.
    A. Taflove and K. R. Umashankar, Radar cross section of general three-dimensional scatterers, IEEE Trans. Electromagn. Comnat. 25:433 (1983).Google Scholar
  13. 13.
    K. R. Umashankar, A. Taflove, and B. Beker, Calculation and experimental validation of induced currents on coupled wires in an arbitrary shaped cavity, IEEE Trans. Antennas Propagat. 35:1248 (1987).ADSCrossRefGoogle Scholar
  14. 14.
    A. Taflove, K. R. Umashankar, B. Beker, F. Harfoush, and K. S. Yee, Detailed FD-TD analysis of electromagnetic fields penetrating narrow slots and lapped joints in thick conducting screens, IEEE Trans. Antennas Propagat. 36:247 (1988).ADSCrossRefGoogle Scholar
  15. 15.
    T. G. Jurgens, A. Taflove, K. R. Umashankar, and T. G. Moore, Finite-difference time-domain modeling of curved surfaces, submitted to IEEE Trans. Antennas Propagat.Google Scholar
  16. 16.
    G. A. Kriegsmann, A. Taflove, and K. R. Umashankar, A new formulation of electromagnetic wave scattering using an on-surface radiation boundary condition approach, IEEE Trans. Antennas Propagat. 35:153 (1987).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    T. G. Moore, J. G. Blaschak, A. Taflove, and G. A. Kriegsmann, Theory and application of radiation boundary operators, IEEE Trans. Antennas Propagat. 36:1797 (1988).ADSCrossRefGoogle Scholar
  18. 18.
    J. G. Maloney, G. S. Smith, and W. R. Scott, Jr., Accurate computation of the radiation from simple antennas using the finite-difference time-domain method, IEEE Trans. Antennas Propagat. 38:1059 (1990).ADSCrossRefGoogle Scholar
  19. 19.
    D. S. Katz, M. J. Piket, A. Taflove, and K. R. Umashankar, FD-TD analysis of electromagnetic wave radiation from systems containing horn antennas, submitted to IEEE Trans. Antennas Propagat.Google Scholar
  20. 20.
    D. M. Sullivan, O. P. Gandhi and A. Taflove, Use of the finite-difference time-domain method in calculating EM absorption in man models, IEEE Trans. Biomed. Eng. 35:179 (1988).Google Scholar
  21. 21.
    C.-Q. Wang and O. P. Gandhi, Numerical simulation of annular phased arrays for anatomically based models using the FD-TD method, IEEE Trans. Microwave Theory Tech. 37:118 (1989).CrossRefGoogle Scholar
  22. 22.
    D. Sullivan, Three-dimensional computer simulation in deep regional hyperthermia using the finite-difference time-domain method, IEEE Trans. Microwave Theory Tech. 38:204 (1990).CrossRefGoogle Scholar
  23. 23.
    M. J. Piket-May, A. Taflove, W.-C. Lin, D. S. Katz, V. Sathiaseelan, and B. Mittal, Computational modeling of electromagnetic hyperthermia: three-dimensional and patient specific, submitted to IEEE Trans. Biomed. Engrg.Google Scholar
  24. 24.
    R. Luebbers, F. P. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, A frequency-dependent finite-difference time-domain formulation for dispersive materials, IEEE Trans. Electromagn. Compat. 32:222 (1990).CrossRefGoogle Scholar
  25. 25.
    R. Joseph, S. Hagness, and A. Taflove, FD-TD computational modeling of dispersive media having second-order and higher relaxations,” presented at 1991 IEEE International AP-S Symposium, London, ON.Google Scholar
  26. 26.
    G.-C. Liang, Y.-W. Liu, and K. K. Mei, Full-wave analysis of coplanar waveguide and slotline using the time-domain finite-difference method, IEEE Trans. Microwave Theory Tech. 37:1949 (1989).CrossRefGoogle Scholar
  27. 27.
    D. M. Sheen, S. M. Ali, M. D. Abouzahra, and J. A. Kong, Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits, IEEE Trans. Microwave Theory Tech. 38:849 (1990).CrossRefGoogle Scholar
  28. 28.
    T. Shibata and E. Sano, Characterization of MIS structure coplanar transmission lines for investigation of signal propagation in integrated circuits, IEEE Trans. Microwave Theory Tech. 38:881 (1990).CrossRefGoogle Scholar
  29. 29.
    R. H. Voelker and R. J. Lomax, A finite-difference transmission line matrix method incorporating a nonlinear device model, IEEE Trans. Microwave Theory Tech. 38:302 (1990).CrossRefGoogle Scholar
  30. 30.
    E. Sano and T. Shibata, Fullwave analysis of picosecond photoconductive switches, IEEE J. Quantum Electron. 26:372 (1990).ADSCrossRefGoogle Scholar
  31. 31.
    S. M. El-Ghazaly, R. P. Joshi, and R. O. Grondin, Electromagnetic and transport considerations in subpicosecond photoconductive switch modeling, IEEE Trans. Microwave Theory Tech. 38:629 (1990).CrossRefGoogle Scholar
  32. 32.
    S.-T. Chu and S. K. Chaudhuri, A finite-difference time-domain method for the design and analysis of guided-wave optical structures, IEEE J. Lightwave Tech. 7:2033 (1989).ADSCrossRefGoogle Scholar
  33. 33.
    V. Shankar, A. H. Mohammadian, and W. F. Hall, A time-domain, finite-volume treatment for the Maxwell’s equations, Electromagnetics 10:127(1990).Google Scholar
  34. 34.
    N. K. Madsen and R. W. Ziolkowski, A three-dimensional modified finite volume technique for Maxwell’s equations, Electromagnetics 10:147 (1990).Google Scholar
  35. 35.
    G. A. Kriegsmann, Exploiting the limiting amplitude principle to numerically solve scattering problems, Wave Motion 4:371 (1982).zbMATHMathSciNetGoogle Scholar
  36. 36.
    Generalized multipole technique (GMT) RCS data for the double-sphere problem was provided by Arthur Ludwig of General Research Corp., Santa Barabara, CA.Google Scholar
  37. 37.
    S. W. Lee, ed., “High-Frequency Scattering Data Book,” Electromagnetics Laboratory, Univ. of Illinois at Urbana-Champaign (1989).Google Scholar
  38. 38.
    A. T. Perlik, T. Opsahl, and A. Taflove, Predicting scattering of electromagnetic fields using FD-TD on a Connection Machine, IEEE Trans. Magnetics 25:2910 (1989).CrossRefGoogle Scholar
  39. 39.
    J. E. Patterson, T. Cwik, R. D. Ferraro, N. Jacobi, P. C. Liewer, T. G. Lockhart, G. A. Lyzenga, J. W. Parker, and D. A. Simoni, Parallel computation applied to electromagnetic scattering and radiation analysis, Electromagnetics 10:21 (1990).Google Scholar
  40. 40.
    D. P. Hamilton, World’s fastest computer, Science 250:1203 (1990).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Allen Taflove
    • 1
  1. 1.Department of Electrical Engineering and Computer Science, McCormick School of EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations