Direct Maxwell’s Equation Solvers in Time and Frequency Domains — A Review

  • Raj Mittra
  • Jin-Fa Lee


In this paper, we present a brief review of partial differential equation (PDE) techniques for solving the problems of electromagnetic scattering from complex bodies and circuit modeling of microwave components. Radar targets as well as microwave circuits in use today often possess intricate geometries and comprise of materials with highly inhomogeneous properties. One consequence of this is that the analytical and asymptotical techniques can seldom be used to solve the field problems in these geometries with sufficient accuracy, and even the application of the integral equation approach, e.g., the Method of Moments, becomes rather involved. However, the direct solution of Maxwell’s equations using PDEs, such as the finite element (FEM) or the finite difference time domain (FDTD) methods, offers an attractive alternative for analyzing these complex problems conveniently, reliably and accurately.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Morgan, S. K. Chang, and K. K. Mei, Coupled azimuthal potentials for EM field problems in inhomogeneous penetrable bodies of revolution, IEEE Trans. Antennas Propagat. 27:202 (1979).ADSCrossRefGoogle Scholar
  2. 2.
    J. C. Nedelec, Mixed finite element in R3, Numer. Math. 35:315 (1980).zbMATHMathSciNetGoogle Scholar
  3. 3.
    S. H. Wong and Z. J. Cendes, Combined finite element — modal solution of three-dimensional eddy current problems, IEEE Trans. Magn. 24:2685 (1988).CrossRefGoogle Scholar
  4. 4.
    A. Bossavit and I. Mayergoyz, Edge-elements for scattering problems, IEEE Trans. Magn. 25:2816 (1989).CrossRefGoogle Scholar
  5. 5.
    J. F. Lee, D. K. Sun, and Z. J. Cendes, Full-wave analysis of dielectric waveguides using tangential vector finite elements, to appear in IEEE Trans. Microwave Theory and Tech.Google Scholar
  6. 6.
    A. Bayliss, M. Gunzburger, and E. Turkel, Boundary conditions for the numerical solution of elliptic equations in exterior regions, SIAM J. Appl. Math. 42:430 (1982).zbMATHMathSciNetGoogle Scholar
  7. 7.
    B. Engquist and A. Majda, Radiation boundary conditions for the numerical simulation of waves, Math. Comp. 31:629 (1977).zbMATHMathSciNetGoogle Scholar
  8. 8.
    R. Mittra and O. Ramahi, Absorbing boundary conditions for the direct solution of partial differential equations arising in electromagnetic scattering problems, in: “PIER2: Finite Element and Finite Difference Methods in Electromagnetic Scattering,” M. A. Morgan, ed., Elsevier, New York (1990).Google Scholar
  9. 9.
    K. S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas Propagat. 14:302 (1966).ADSCrossRefzbMATHGoogle Scholar
  10. 10.
    K. S. Kunz and K. M. Lee, A three-dimensional finite-difference solution of the external response of an aircraft to a complex transient EM environment: Part I — The method and its implementation, IEEE Trans, Electromagn. Compat, 20:328 (1978).Google Scholar
  11. 11.
    A. Taflove and M. E. Brodwin, Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations, IEEE Trans. Microwave Theory and Tech. 23:623 (1975).ADSCrossRefGoogle Scholar
  12. 12.
    A. C. Cangellaris, C. C. Lin, and K. K. Mei, Point-matching time domain finite element methods for electromagnetic radiation and scattering, IEEE Trans. Antennas Propagat. 35:1160 (1987).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    R. Holland, Finite difference solutions of Maxwell’s equations in generalized nonorthogonal coordinates, IEEE Trans. Nuc. Sci. 30:4689 (1983).Google Scholar
  14. 14.
    V. Shankar, A. H. Mohammadian, and W. F. Hall, A time-domain finite-volume treatment for the Maxwell equations, Electromagnetics 10:127 (1990).Google Scholar
  15. 15.
    A. J. Butler, “Time domain solutions of two- and three-dimensional transient electromagnetic fields,” Ph.D. thesis, Carnegie-Mellon University (1990).Google Scholar
  16. 16.
    M. Fusco, FDTD algorithm in curvilinear coordinates, IEEE Trans. Antennas Propagat. 38:76 (1990).ADSCrossRefGoogle Scholar
  17. 17.
    A. Konrad, Vector variational formulation of electromagnetic fields in anisotropic media, IEEE Trans. Microwave Theory and Tech. 24:553 (1976).ADSCrossRefMathSciNetGoogle Scholar
  18. 18.
    J. D’Angelo and I. Mayergoyz, Finite element methods for the solution of RF radiation and scattering problems, Electromagnetics 10:177 (1990).Google Scholar
  19. 19.
    J. F. Lee, Analysis of passive microwave devices by using three-dimensional tangential vector finite elements, to appear in Int. J. Numer. Model. (1990).Google Scholar
  20. 20.
    J. F. Lee, R. Mittra, and J. Joseph, Finite difference time domain algorithm in curvilinear coordinates for solving three-dimensional open-region scattering problems, to appear in IEEE AP-S Int. Symposium (1991).Google Scholar
  21. 21.
    N. Phai, Automatic mesh generation with tetrahedral elements, Int. J. for Numer. Meth. in Eng. 18:273 (1982).CrossRefzbMATHGoogle Scholar
  22. 22.
    D. F. Watson, Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes, The Comp. J. 24:167 (1981).Google Scholar
  23. 23.
    S. S. Carins, “Introductory Topology,” The Ronald Press Company, New York (1961).Google Scholar
  24. 24.
    B. J. McCartin, L. J. Bahrmasel, and G. Meltz, Application of the control region approximation to two-dimensional electromagnetic scattering, in: “PIER2: Finite Element and Finite Difference Methods in Electromagnetic Scattering,” M. A. Morgan, ed., Elsevier, New York (1990).Google Scholar
  25. 25.
    R. W. Ziolkowski and J. B. Grant, Scattering from cavity-backed apertures: The generalized dual series solution of the concentrically loaded E-pol slit cylinder problem, IEEE Trans. Antennas Propagat. 35:504 (1987).ADSCrossRefGoogle Scholar
  26. 26.
    T. Deveze, F. Clerc, and W. Tabbara, Second order pseudo-transparent boundary equations for FDTD method, AP-S Symposium Digest 1627 (1990).Google Scholar
  27. 27.
    R. F. Harrington, “Time-harmonic Electromagnetic Fields,” McGraw-Hill, New York (1961).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Raj Mittra
    • 1
  • Jin-Fa Lee
    • 1
  1. 1.Electromagnetic Communication LaboratoryUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations