Transient Acoustic Radiation in a Continuously Layered Fluid — An Analysis Based on the Cagniard Method

  • A. T. de Hoop
  • M. D. Verweij


In the present paper, the problem of the transient wave propagation in a continuously layered fluid is addressed directly with the aid of the Cagniard method. The standard integral transformations that are characteristic for this method (Cagniard, 1939, 1962; De Hoop, 1960, 1961, 1988; Aki and Richards, 1980) are applied to the first-order acoustic wave equations of a fluid. The resulting system of differential equations in the depth coordinate is next transformed into a system of integral equations. These integral equations admit a solution by a Neumann iteration. Each higher-order iterate can be physically interpreted as to be generated, through continuous reflection, by the previous one. To show the generality of the method, anisotropy of the fluid in its volume density of mass is included. This type of anisotropy is encountered in the equivalent medium theory of finely discretely layered media (Schoenberg, 1984). The compressibility is a scalar. Next, the transformation back to the space-time domain is performed using the Cagniard method, in which a number of steps can be carried out analytically even for the anisotropic case.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aki, K., and Richards, P. G., 1980, “Quantitative seismology”, W. H. Freeman & Co., San Francisco, p. 224.Google Scholar
  2. Bremmer, H., 1939, Geometrisch-optische benadering van de golfvergelijking, in: “Handelingen Natuur- en Geneeskundig Congres, Nijmegen,” Ruygrok, Haarlem, The Netherlands (in Dutch; title in English: Geometric-optical approximation of the wave equation).Google Scholar
  3. Bremmer, H., 1949a, The propagation of electromagnetic waves through a stratified medium and its WKB approximation for oblique incidence, Physica, 15:593–608.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  4. Bremmer, H., 1949b, Some remarks on the ionospheric double refraction. Part II: Reduction of Maxwell’s equations; WKB approximation, Philips Research Reports, 4:189–205.MathSciNetGoogle Scholar
  5. Bremmer, H., 1951, The WKB approximation as the first term of a geometric-optical series, Commun. Pure Appl. Math., 4:105–115 (also in: “The theory of electromagnetic waves”, M. Kline, ed., Interscience, New York).CrossRefzbMATHMathSciNetGoogle Scholar
  6. Cagniard, L., 1939, “Relection et refraction des ondes seismiques progressives”, Gauthier-Villars, Paris (in French).Google Scholar
  7. Cagniard, L., 1962, “Reflection and refraction of progressive seismic waves”, McGraw-Hill, New York (translation and revision of Cagniard (1939) by E. A. Flinn and C. H. Dix).zbMATHGoogle Scholar
  8. Chapman, C. H., 1974, Generalized ray theory for an inhomogeneous medium, Geophys. J. R. Astr. Soc, 36:673–704.CrossRefzbMATHGoogle Scholar
  9. de Hoop, A. T., 1960, A modifiction of Cagniard’s method for solving seismic pulse problems, App. Sci. Res., B8:349–356.zbMATHGoogle Scholar
  10. de Hoop, A. T., 1961, Theoretical determination of the surface motion of a uniform elastic half-space produced by a dilatational, impulsive point sorce, in: “Proceedings Colloque International du C.N.R.S.”, no. 111, Marseille, pp. 21–31.Google Scholar
  11. de Hoop, A. T., 1988, Acoustic radiation from impulsive sources in a layered fluid, Nieuw Archief voor Wiskunde, 6:111–129.zbMATHGoogle Scholar
  12. Heyman, E., and Felsen, L. B., 1984, Non-dispersive approximations for transient ray fields in an inhomogeneous medium, in: “Hybrid formulation of wave propagation and scattering,” L. B. Felsen, ed., Martinus Nijhoff Publishers, Dordrecht, (The Netherlands).Google Scholar
  13. Heyman, E., and Felsen, L. B., 1987, Real and complex spectra — a generalization of WKB seismograms, Geophys. J. R. Astr. Soc., 91:1087–1126.CrossRefGoogle Scholar
  14. van der Hijden, J. H. M. T., 1987, “Propagation of transient elastic waves in stratified anisotropic media”, North-Holland, Amsterdam.zbMATHGoogle Scholar
  15. Schoenberg, M., 1984, Wave propagation in alternating solid and fluid layers, Wave Motion, 6:303–320.CrossRefzbMATHGoogle Scholar
  16. Singh, S. C., and Chapman, C. H., 1988, WKBJ seismogram theory in anisotropic media, J. Acoust. Soc. Am., 84:732–741.ADSCrossRefGoogle Scholar
  17. Wiggins, R. A., and Helmberger, D. V., 1974, Synthetic seismogram computation by expansion in generalized rays, Geophys. J. R. Astr. Soc, 37:73–90.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • A. T. de Hoop
    • 1
  • M. D. Verweij
    • 1
  1. 1.Laboratory of Electromagnetic Research, Department of Electrical EngineeringDelft University of TechnologyDelftThe Netherlands

Personalised recommendations