Advertisement

Seismic Waveform Modelling of High-Frequency Body Waves

  • C. H. Chapman
  • R. T. Coates

Abstract

The Earth is a complicated inhomogeneous, anelastic and anisotropic medium. Even though the fundamental equations of elasticity are well known and understood, modelling the propagation of seismic waves is non-trivial, and the interpretation or inverse problem is difficult. Many aspects of seismic wave propagation have their counterparts in other fields, and similar techniques can be used to model the propagation. Nevertheless, for realistic Earth structures, certain problems unique to seismology arise.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cerveny, V., 1972, Seismic rays and ray intensities in inhomogeneous anisotropic media, Geophys. J. R. astr. Soc., 29, 1–13.CrossRefzbMATHGoogle Scholar
  2. Chapman, C.H., 1985, Ray theory and its extensions: WKBJ and Maslov seismograms, J. Geophys., 58, 27–43.Google Scholar
  3. Chapman, C.H. and Drummond, R., 1982, Body-wave seismograms in inhomogeneous media using Maslov asymptotic theory, Bull. seism. Soc. Am., 72, S277-S317.Google Scholar
  4. Coates, R.T. and Chapman, C.H., 1990, Quasi-shear wave coupling in weakly anisotropic 3-D media, Geophys. J. Int., 103, 301–320.ADSCrossRefGoogle Scholar
  5. Coates, R.T. and Chapman, C.H., 1991, Generalized Born scattering of seismic waves in 3-D media, Geophys. J. Int., (submitted).Google Scholar
  6. Kendall, J-M. and Thomson, C.J., 1989, A comment on the form of the geometrical spreading equations, with some examples of seismic ray tracing in inhomogeneous, anisotropic media, Geophys. J. Int., 99, 401–413.ADSCrossRefzbMATHGoogle Scholar
  7. Kendall, J-M., Guest, W.S. and Thomson, C.J., 1991, Ray theory Green’s function reciprocity and ray-centered coordinates in anisotropic media, preprint.Google Scholar
  8. Maslov, V.R. 1965, “Theory of Perturbations and Asymptotic Methods”, (in Russian), Izd. MGU, Moscow.Google Scholar
  9. Smirnov, V.I., 1964, “A Course in Higher Mathematics”, Vol. 4, Trans. Brown, D.E. and Sneddon, I.N., Pergamon Press, Oxford.Google Scholar
  10. Thomson, C.J. and Chapman, C.H., 1985, An introduction to Maslov’s asymptotic method, Geophys. J. R. astr. Soc, 83, 143–168.CrossRefzbMATHGoogle Scholar
  11. Woodhouse, J.H., 1974, Surface waves in a laterally varying layered structure, Geophys. J. R. astr. Soc, 37, 461–490.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • C. H. Chapman
    • 1
    • 2
  • R. T. Coates
    • 1
    • 3
  1. 1.Department of Earth SciencesUniversity of CambridgeCambridgeUK
  2. 2.Department of PhysicsUniversity of TorontoTorontoCanada
  3. 3.Earth Resources Laboratory, Department of Earth, Atmospheric and Planetary ScienceMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations