Advertisement

Antiviral Substances

  • Kenneth L. Rinehart
  • Lois S. Shield
  • Martha Cohen-Parsons
Chapter

Abstract

Even today, antiviral drugs are a rarity (Becker, 1976, 1983; Rothschild et al., 1978; R. T. Walker et al., 1979; Collier and Oxford, 1980; De Clercq and Walker, 1984; Mandell et al., 1985; Rinehart, 1992): acyclovir is a notable success in reducing the severity of genital herpes infections, and newer analogues are under development; azidothymidine (AZT) is widely employed to extend the lifetime of AIDS sufferers, while other compounds with anti-AIDS potential are under investigation; vidarabine is approved for the treatment of idoxuridine-and acyclovir-resistant infections; ribavirin is an intranasal inhalant effective against respiratory syncitial virus (Stephen et al., 1980); amantidine has been used for many years in treating some forms of influenza (Davies et al., 1964). Even fewer antiviral agents were available in the 1970s when we began our systematic surveys designed to assess the bioactivity of marine organisms.

Keywords

Antiviral Activity Patent Application Antiviral Agent Marine Sponge Rift Valley Fever 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Andersson, L., Bohlin, L., Iorizzi, M., Riccio, R., Minale, L., and Moreno-López, W, 1989, Biological activity of saponins and saponin-like compounds from starfish and brittle-stars, Toxicon 27: 179–188.PubMedGoogle Scholar
  2. Ankel, H., Mittnacht, S., and Jacobsen, H., 1985, Antiviral activity of prostaglandin A on encephalomyocarditis virus-infected cells: A unique effect unrelated to interferon, J. Gen. Virol. 66: 2355–2364.PubMedGoogle Scholar
  3. Bader, T., Yamada, Y., and Ankel, H., 1991, Antiviral activity of the prostanoid clavulone II against vesicular stomatitis virus, Antiviral Res. 16: 341–355.PubMedGoogle Scholar
  4. Barrow, C. J., Blunt, J. W, Munro, M. H. G., and Perry, N. B., 1988a, Variabilin and related compounds from a sponge of the genus Sarcotragus, J. Nat. Prod. 51: 275–281.Google Scholar
  5. Barrow, C. J., Blunt, J. W, Munro, M. H. G., and Perry, N. B., 1988b, Oxygenated furanosesterterpene tetronic acids from a sponge of the genus Ircinia, J. Nat. Prod. 51: 1294–1298.Google Scholar
  6. Barrow, C. J., Blunt, J. W, and Munro, M. H. G., 1989, Autooxidation studies on the marine sesterterpene tetronic acid, variabilin, J. Nat. Prod. 52: 346–359.Google Scholar
  7. Becker, Y., 1976, Antiviral Drugs, Mode of Action and Chemotherapy of Viral Infections of Man, (Monographs in Virology, Volume 11 ), S. Karger, Basel.Google Scholar
  8. Becker, Y., 1983, Molecular Virology, Molecular and Medical Aspects of Disease-Causing Viruses of Man and Animals, M. Nijhoff, The Hague.Google Scholar
  9. Bergmann, W, and Feeney, R. J., 1950, The isolation of a new thymine pentoside from sponges, J. Am. Chem. Soc. 72: 2809–2810.Google Scholar
  10. Bergmann, W., and Feeney, R. J., 1951, Contributions to the study of marine products. XXXII. The nucleosides of sponges. I, J. Org. Chem. 16: 981–987.Google Scholar
  11. Blunt, J. W, Hartshorn, M. P, McLennan, T. J., Munro, M. H. G., Robinson, W. T., and Yorke, S. C., 1978, Thyrsiferol: A squalene-derived metabolite of Laurencia thyrsifera, Tetrahedron Leu. 1978: 69–72.Google Scholar
  12. Blunt, J. W, Lake, R. J., Munro, M. H. G., and Toyokuni, T., 1987, The stereochemistry of eudistomins C, K, E, F and L, Tetrahedron Lett. 28: 1825–1826.Google Scholar
  13. Blunt, J. W, Munro, M. H. G., Perry, N. B., and Thompson, A. M., 1989, Preparation of Mycalamides and Their Derivatives As Antitumor and Antiviral Agents, U.S. Patent No. 4,868,204, September 19, 1989 [Chem. Abstr. 113: 114949y (1990)].Google Scholar
  14. Burres, N. S., Sazesh, S., Gunawardana, G. P, and Clement J. J., 1989, Antitumor activity and nucleic acid binding properties of dercitin, a new acridine alkaloid isolated from a marine Dercitus species sponge, Cancer Res. 49: 5267–5274.PubMedGoogle Scholar
  15. Canonico, P. G., Pannier, W. L., Huggins, J. W, and Rinehart, Jr., K. L., 1982, Inhibition of RNA viruses in vitro and in Rift Valley fever-infected mice by didemnins A and B, Antimicrob. Agents Chemother. 22: 696–697.PubMedGoogle Scholar
  16. Carmely, S., and Kashman, Y., 1985, Structure of swinholide-A, a new macrolide from the marine sponge Theonella swinhoei, Tetrahedron Len. 26: 511–514.Google Scholar
  17. Carté, B., and Faulkner, D. J., 1982, Revised structures for the polyandrocarpidines, Tetrahedron Lett. 23: 3863–3866.Google Scholar
  18. Carter, G. T, and Rinehart, Jr., K. L., 1978a, Acarnidines, novel antiviral and antimicrobial compounds from the sponge Acarnus erithacus (de Laubenfels), J. Am. Chem. Soc. 100: 43024304.Google Scholar
  19. Carter, G. T., and Rinehart, Jr., K. L., 1978b, Aplidiasphingosine, an antimicrobial and antitumor terpenoid from an Aplidium sp. (marine tunicate), J. Am. Chem. Soc. 100: 7441–7442.Google Scholar
  20. Cheng, M. T, and Rinehart, Jr., K. L., 1978, Polyandrocarpidines: Antimicrobial and cytotoxic agents from a marine tunicate (Polyandrocarpa sp.) from the Gulf of California, J. Am. Chem. Soc. 100: 7409–7411.Google Scholar
  21. Chun, H. G., Davies, B., Hoth, D., Suffness, M., Plowman, J., Flora, K., Grieshaber, C., and Leyland-Jones, B., 1986, Didemnin B. The first marine compound entering clinical trials as an antineoplastic agent, Invest. New Drugs 4: 279–284.PubMedGoogle Scholar
  22. Cimino, G., De Stefano, S., and Minale, L., 1974, Oxidized furanoterpenes from the sponge Spongia officinalis, Experientia 30: 18–20.Google Scholar
  23. Cimino, G., De Rosa, S., and De Stefano, S., 1984, Antiviral agents from a gorgonian, Eunicella cavolini, Experientia 40: 339–340.Google Scholar
  24. Cohen, S. S., 1966, Introduction to the biochemistry of D-arabinosyl nucleosides, in: Progress in Nucleic Acid Research and Molecular Biology, Vol. 5 ( J. N. Davidson and W. E. Cohn, eds.), Academic Press, New York, pp. 1–88.Google Scholar
  25. Collier, L. H., and Oxford, J. (eds), 1980, Developments in Antiviral Therapy, Academic Press, London.Google Scholar
  26. Corey, E. J., and Ha, D.-C., 1988, Total synthesis of venustatriol, Tetrahedron Lett. 29: 3171–3174.Google Scholar
  27. Covai, S. J., Cross, S., Bernardinelli, G., and Jefford, C. W, 1988, Brianthein V, a new cytotoxic and antiviral diterpene isolated from Briareum asbestinum, J. Nat. Prod. 51: 981–984.Google Scholar
  28. Cross, S. S., and Lewis, T. W, 1987, Development of rapid assay for screening compounds for antiviral activity against RNA viruses, in: Advances in Experimental Medicine and Biology, Vol. 28 (Proceedings of the Third International Coronaviruses Symposium, September 14–18, 1986, Asilomar, California), pp. 275–276.Google Scholar
  29. Davies, W. L., Grunert, R. R., Haff, R. F., McGahen, J. W, Neumayer, E. M., Paulshock, M., Watts, J. C., Wood, T R., Hermann, E. C., and Hoffmann, C. E., 1964, Antiviral activity of 1-adamantanamine (Amantadine), Science 144: 862–863.PubMedGoogle Scholar
  30. De Clercq, E., and Walker, R. T, (Eds.), 1984, Targets for the Design of Antiviral Agents (NATO Advanced Study Institute on Targets for the Design of Antiviral Agents, 1983, Les Arcs, France), Plenum Press, New York.Google Scholar
  31. De Clercq, E., Krajewska, E., Descamps, J., and Torrence, P. F, 1977, Anti-herpes activity of deoxythymidine analogues: Specific dependence on virus-induced deoxythymidine kinase, Mol. Pharmacol. 13: 980–984.PubMedGoogle Scholar
  32. Driscoll, P. C., Clore, G. M., Beress, L., and Gronenborn, A. M., 1989a, A proton nuclear magnetic resonance study of the antihypertensive and antiviral protein BDS-I from the sea anemone Anemonia sulcata: Sequential and stereospecific resonance assignment and secondary structure, Biochemistry 28: 2178–2187.PubMedGoogle Scholar
  33. Driscoll, P. C., Gronenborn, A. M., Beress, L., and Clore, G. M., 1989b, Determination of the three-dimensional solution structure of the antihypertensive and antiviral protein BDS-I from the sea anemone Anemonia sulcata: A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing, Biochemistry 28: 2188–2198.PubMedGoogle Scholar
  34. Faulkner, D. J., 1973, Variabilin, an antibiotic from the sponge, Ircinia variabilis, Tetrahedron Lett. 1973: 3821–3822.Google Scholar
  35. Ferrer-Di Martino, M., Ba, D., Kornprobst, J.-M., Combaut, G., and Digoutte, J.-P, 1985, Caracterisation chimique et activité virostatique in vitro vis à vis du virus de la fievre jaune de quelques carraghenanes extraits d’algues rouges senegalaises, in: Vth JUPAC, Paris, Abstract PA-44.Google Scholar
  36. Frank, K. B., McKernan, P A., Smith, R. A., and Smee, D. F, 1987, Visna virus as an in vitro model for human immunodeficiency virus and inhibition by ribavarin, phosphonoformate, and 2’,3’dideoxynucleosides, Antimicrob. Agents Chemother. 31: 1369–1374.PubMedGoogle Scholar
  37. Gonzalez, A. G., Arteaga, J. M., Fernandez, J. J., Martin, J. D., Norte, M., and Ruano, J. Z., 1984, Terpenoids of the red alga Laurencia pinnatifida, Tetrahedron 40: 2751–2755.Google Scholar
  38. Gonzalez, M. E., Alarcón, B., and Carrasco, L., 1987, Polysaccharides as antiviral agents: Antiviral activity of carrageenan, Antimicrob. Agents Chemother. 31: 1388–1393.PubMedGoogle Scholar
  39. Gosselin, G., Bergogne, M.-C., de Rudder, J., De Clercq, E., and Imbach, J.-L., 1986, Systematic synthesis and biological evaluation of a-and 3-xylofuranosyl nucleosides of the five naturally occurring bases in nucleic acids and related analogues, J. Med. Chem. 29: 203–213.PubMedGoogle Scholar
  40. Grode, S. H., James, T. R., and Cardellina, II, J. H., 1983a, Brianthein Z, a new polyfunctional diterpene from the gorgonian Briareum polyanthes, Tetrahedron Lett. 24: 691–694.Google Scholar
  41. Grode, S. H., James, Jr., T. R., Cardellina II, J. H., and Onan, K. D., 1983b, Molecular structures of the briantheins, new insecticidal diterpenes from Briareum polyanthes, J. Org. Chem. 48: 5203–5207.Google Scholar
  42. Groweiss, A., Look, S. A., and Fenical, W, 1988, Solenolides, new antiinfianimatory and antiviral diterpenoids from a marine octocoral of the genus Solenopodium, J. Org. Chem. 53: 2401–2406.Google Scholar
  43. Gunasekera, S. P., Cross, S. S., Kashman, Y., Lui, M. S., Rinehart, K. L., and Tsujii, S., 1989, Topsentin Compounds Effective Against Viruses and Certain Tumors, U.S. Patent No. 4,866,084, September 12, 1989 [Chem. Abstr. 112:185775d].Google Scholar
  44. Gunawardana, G. P., Kohmoto, S., Gunasekera, S. P, McConnell, O. J., and Koehn, E E., 1988, Dercitin, a new biologically active acridine alkaloid from a deep water marine sponge, Dercitus sp., J. Am. Chem. Soc. 110: 4856–4858.Google Scholar
  45. Gunawardana, G. P, Kohmoto, S., and Burres, N. S., 1989, New cytotoxic acridine alkaloids from two deep water marine sponges of the family Pachastrellidae, Tetrahedron Lett. 30: 4359–4362.Google Scholar
  46. Gustafson, K., Roman, M., and Fenical, W, 1989, The macrolactins, a novel class of antiviral and cytotoxic macrolides from a deep-sea marine bacterium, J. Am. Chem. Soc. 111: 7519–7524.Google Scholar
  47. Hager, L. P, White, R. H., Hollenberg, P. F., Doubek, D. L., Brusca, R. C., and Guerrero, R., 1976, A survey of organic halogens in marine organisms, in: Food-Drugs from the Sea Proceedings 1974 ( H. H. Webber and G. D. Ruggieri, eds.), Marine Technology Society, Washington, D.C., pp. 421–428.Google Scholar
  48. Hashimoto, M., Kan, T., Yanagiya, M., Shirahama, H., and Matsumoto, T., 1987, Synthesis of A-B-Cring segment of thyrsiferol construction of a strained tetrahydropyran ring existent as a boat form, Tetrahedron Lett. 28: 5665–5668.Google Scholar
  49. Hashimoto, M., Kan, T., Nozaki, K., Yanagiya, M., Shirahama, H., and Matsumoto, T., 1988, Total syntheses of (+)-thyrsiferol and (+)-venustatriol, Tetrahedron Lett. 29: 1143–1144.Google Scholar
  50. Hermann, Jr., E. C., 1965, Antiviral substances, Ann. N. Y. Acad. Sci. 130: 1–482.Google Scholar
  51. Hermkens, P. H. H., v. Maarseveen, J. H., Ottenheijm, H. C. J., Kruse, C. G., and Scheeren, H. W, 1990, Intramolecular Pictet—Spengler reaction of N-alkoxytryptamines. 3. Stereoselective synthesis of debromoeudistomin L and O-methyldebromoeudistomin E and their stereo-isomers, J. Org. Chem. 55: 3998–4006.Google Scholar
  52. Higa, T., 1985, 2-(1-Chloro-2-hydroxyethyl)-4,4-dimethylcyclohexa-2,5-dienone: A precursor of 4,5dimethylbenzo[b]furan from the red alga Desmia hornemanni, Tetrahedron Lett. 26: 2335–2336.Google Scholar
  53. Higa, T., 1986, Biological activities of marine organisms from Okinawa, in: Japan—US. Seminar on Bio-organic Marine Chemistry, Okinawa, June 30—July 5, 1986, Abstract V-4, p. 22.Google Scholar
  54. Higa, T., and Sakai, R., 1988, Antiviral Guanidine Derivative Compositions and Their Methods of Use, PCT International Application WO 88 00,181, January 14, 1988; U.S. Patent Application 879,079, June 26, 1986 [Chem. Abstr. 109:104790t].Google Scholar
  55. Higa, T., Sakai, R., Snader, K. M., Cross, S. S., and Theiss, W, 1985, Antitumor and antiviral cyclohexadienones from the red alga Desmia hornemanni, Vth IUPAC, Paris, Abstract 2: 22.Google Scholar
  56. Higa, T., Sakemi, S., and Cross, S. S., 1988a, Antiviral Organic Triterpene Compositions and Derivatives, and Their Manufacture from Red Alga, PCT International Application WO 88 00,194, January 14, 1988; U.S. Patent Application 879,092, June 26, 1986 [Chem. Abstr. 109: 2 1643w ].Google Scholar
  57. Higa, T., Sakai, R., and Lui, M. S., 1988b, Antibiotic and Antitumor Misakinolide Compositions and Their Derivatives, PCT International Application WO 88 00,195, January 14, 1988 [Chem. Abstr. 111:17702p].Google Scholar
  58. Higa, T., Sakemi, S., and Cross, S. S., 1989, Isolation of Onnamide A Derivatives as New Antiviral, Antitumor and Antifungal Agents, European Patent Application EP 299,713, January 18, 1989; U.S. Patent Application 74,977, July 17, 1987 [Chem. Abstr. 111:167390z].Google Scholar
  59. Ichiba, T., Yoshiba, W. Y., and Scheuer, P. J., 1991, Hennoxazoles: Bioactive bisoxazoles from a marine sponge, J. Am. Chem. Soc. 113: 3173–3174.Google Scholar
  60. Jares-Erijman, E. A., Sakai, R., and Rinehart, K. L., 1991, Crambescidins, new antiviral and cytotoxic compounds from the sponge Crambe crambe J. Org. Chem. 56: 5712–5715.Google Scholar
  61. Jiménez, C., Quinoa, E., and Crews, P., 1991, Novel marine sponge alkaloids. 3. ß-carbolinium salts from Fascaplysinopsis reticulata, Tetrahedron Lett. 32: 1843–1846.Google Scholar
  62. Kashman, Y., Hirsch, S., Koehn, E, and Cross, S., 1987, Reiswigins A and B, novel antiviral diterpenes from a deepwater sponge, Tetrahedron Lett. 28: 5461–5464.Google Scholar
  63. Kashman, Y., Hirsch, S., McConnell, O. J., Ohtani, I., Kusumi, T., and Kakisawa, H., 1989a, Ptilomycalin A: A novel polycyclic guanidine alkaloid of marine origin, J. Am. Chem. Soc. 111: 8925–8926.Google Scholar
  64. Kashman, Y., Hirsch, S., Cross, S. S., and Koehn, F, 1989b, Antiviral Compositions Derived from Marine Sponge Epipolasis reiswigi and Their Methods of Use, European Patent Application EP 306,282, March 8, 1989; U.S. Patent Application 91,078, August 31, 1987 [Chem. Abstr. 111: 140473s].Google Scholar
  65. Kato, Y., Fusetani, N., Matsunaga, S., Hashimoto, K., Sakai, R., Higa, T., and Kashman, Y., 1987, Antitumor macrodiolides isolated from a marine sponge Theonella sp.: Structure revision of misakinolide A, Tetrahedron Lett. 28: 6225–6228.Google Scholar
  66. Kazlauskas, R., Murphy, P. T., Quinn, R. J., and Wells, R. J., 1976, Tetradehydrofurospongin-1, a new C-21 furanoterpene from a sponge, Tetrahedron Lett. 16: 1331–1332.Google Scholar
  67. Kazlauskas, R., Murphy, P T., Wells, R. J., Noack, K., Oberhänsli, W. E., and Schönholzer, P, 1979, A new series of diterpenes from Australian Spongia species, Aust. J. Chem. 32: 867–880.Google Scholar
  68. Keifer, P. A., Schwartz, R. E., Koker, M. E. S., Hughes, Jr., R. G., Rittschof, D., and Rinehart, K. L., 1991, Bioactive bromopyrrole metabolites from the Caribbean sponge Agelas conifera, J. Org. Chem. 56: 2965–2975.Google Scholar
  69. Kikuchi, H., Tsukitani, Y., Iguchi, K., and Yamada, Y., 1982, Clavulones, new type of prostanoids from the stolonifer Clavularia viridis Quoy and Gaimard, Tetrahedron Lett. 23: 5171–5174.Google Scholar
  70. Kinzer, K. F, and Cardellina II, J. H., 1987, Three new 3-carbolines from the Bermudian tunicate Eudistoma olivaceum, Tetrahedron Lett. 28: 925–926.Google Scholar
  71. Kirkup, M. P, Shankar, B. B., McCombie, S., Ganguly, A. K., and McPhail, A. T., 1989, A concise route to the oxathiazepine containing eudistomin skeleton and some carba-analogs, Tetrahedron Lett. 30: 6809–6812.Google Scholar
  72. Knübel, G., Larsen, L. K., Moore, R. E., Levine, I. A., and Patterson, G. M. L., 1990, Cytotoxic, antiviral indolocarbazoles from a blue-green alga belonging to the Nostocaceae, J. Antibiot. 43: 1236–1239.PubMedGoogle Scholar
  73. Kobayashi, J., Harbour, G. C., Gilmore, J., and Rinehart, Jr., K. L., 1984, Eudistomins A, D, G, H, I, J, M, N, O, P, and Q, bromo-, hydroxy-, pyrrolyl-, and 1-pyrrolinyl-ß-carbolines from the antiviral Caribbean tunicate Eudistoma olivaceum, J. Am. Chem. Soc. 106: 1526–1528.Google Scholar
  74. Kobayashi, J., Cheng, J., Ohta, T, Nozoe, S., Ohizumi, Y., and Sasaki, T, 1990, Eudistomidins B, C, and D: Novel antileukemic alkaloids from the Okinawan marine tunicate Eudistoma glaucus, J. Org. Chem. 55: 3666–3670.Google Scholar
  75. Kobayashi, M., Yasuzawa, T., Yoshihara, M., Akutsu, H., Kyogoku, Y., and Kitagawa, I., 1982, Four new prostanoids: Claviridenone-A, -B, -C, and -D, Tetrahedron Lett. 23: 5331–5334.Google Scholar
  76. Koehn, F. E., Gunasekera, S. P, Neal, D. N., and Cross, S. S., 1991, Halitunal, an unusual diterpene aldehyde from the marine alga Halimeda tuna, Tetrahedron Lett. 32: 169–172.Google Scholar
  77. Kohmoto, S., McConnell, O. J., Wright, A., and Cross, S., 1987, Isospongiadiol, a cytotoxic and antiviral diterpene from a Caribbean deep water marine sponge, Spongia sp., Chem. Leu. 197: 1687–1690.Google Scholar
  78. Kohmoto, S., McConnell, O. J., and Cross, S. S., 1988, Antitumor and Antiviral Furanoditerpenoids from a Marine Sponge, European Patent Application EP 285,301, October 5, 1988; U.S. Patent Application 30,727, March 25, 1987 [Chem. Abstr. 111:50424x].Google Scholar
  79. Kolberg, R., 1991, Critics call for a smarter way to screen for drugs, J. NIH Res. 3: 25–26.Google Scholar
  80. Lake, R. J., Brennan, M. M., Blunt, J. W, Munro, M. H. G., and Pannell, L. K., 1988a, Eudistomin K sulfoxide—An antiviral sulfoxide from the New Zealand ascidian Ritterella sigillinoides, Tetra hedron Lett. 29: 2255–2256.Google Scholar
  81. Lake, R. J., McCombs, J. D., Blunt, J. W., Munro, M. H. G., and Robinson, W. T, 19886, Eudistomin K: Crystal structure and absolute stereochemistry, Tetrahedron Lett. 29: 4971–4972.Google Scholar
  82. Mandell, G. L., Douglas, Jr., R. G., and Bennett, J. E. (eds.), 1985, Antiinfective Therapy, Wiley, New York.Google Scholar
  83. Minale, L, Riccio, R., and Sodano, G., 1974, Avarol, a novel sesquiterpenoid hydroquinone with a rearranged drimane skeleton from the sponge Disidea avara, Tetrahedron Lett. 1974: 3401–3404.Google Scholar
  84. Munro, M. H. G., Luibrand, R. T., and Blunt, J. W, 1987, The search for antiviral and anticancer compounds from marine organisms, in: Bioorganic Marine Chemistry, Vol. 1 ( P J. Scheuer, ed.), Springer-Verlag, Berlin, pp. 93–176.Google Scholar
  85. Munro, M. H. G., Perry, N. B., and Blunt, J. W, 1988, Isolation and Testing of the Mycale Metabolite Mycalamide As a Virucide and Neoplasm Inhibitor, European Patent Application EP 289,203, November 2, 1988; U.S. Patent Application 43,700, April 29, 1987 [Chem. Abstr. 110:88610x].Google Scholar
  86. Munro, M. H. G., Blunt, J. W, Barns, G., Battershill, C. N., Lake, R. J., and Perry, N. B., 1989, Biological activity in New Zealand marine organisms, Pure Appl. Chem. 61: 529–534.Google Scholar
  87. Muto, S., Nimura, K., Oohara, M., Oguchi, Y., Matsunaga, K., Hirose, K., Kakuchi, J., Sugita, N., and Furusho, T., 1988, Polysaccharides from Marine Algae and Antiviral Drugs Containing the Same As Active Ingredient, European Patent Application EP 295,956, December 21, 1988; Japanese Patent Application 87/152,086, June 18, 1987 [Chem. Abstr. 111:54116w].Google Scholar
  88. Nakagawa, M., Liu, J.-J., and Hino, T., 1989, Total synthesis of (—)-eudistomin L and (—)debromoeudistomin L, J. Am. Chem. Soc. 111: 2721–2722.Google Scholar
  89. Neushul, M., 1991, Antiviral carbohydrates from marine red algae, in: Bioactive Compounds from Marine Organisms, ( M.-F. Thompson, R. Sarojini, and R. Nagabhushanam, eds.), Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, India, pp. 275–281.Google Scholar
  90. Noyori, R., Suzuki, M., and Kurozumi, S., 1987a, Preparation of Punaglandin Derivatives, Japanese Kokai Patent No. 62,059,258, March 14, 1987 [Chem. Abstr. 107:39505w].Google Scholar
  91. Noyori, R., Suzuki, M., Morita, Y., and Yanagisawa, A., 1987b, Preparation of Punaglandin Derivatives, Japanese Kokai Patent No. 62,207,254, September 11, 1987 [Chem. Abstr. 108: 22 1488r ].Google Scholar
  92. Perry, N. B., Battershill, C. N., Blunt, J. W, Fenwick, G. D., Munro, M. H. G., and Bergquist, P. R., 1987, Occurrence of variabilin in New Zealand sponges of the order Dictyoceratida, Biochem. Syst. Ecol. 15: 373–376.Google Scholar
  93. Perry, N. B., Blunt, J. W, Munro, M. H. G., and Pannell, L. K., 1988, Mycalamide A, an antiviral compound from a New Zealand sponge of the genus Mycale, J. Am. Chem. Soc. 110: 4850–4851.Google Scholar
  94. Perry, N. B., Blunt, J. W, Munro, M. H. G., and Thompson, A. M., 1990, Antiviral and antitumor agents from a New Zealand Sponge, Mycale sp. 2. Structures and solution conformations of mycalamides A and B, J. Org. Chem. 55: 223–227.Google Scholar
  95. Rinehart, K. L., 1988a, Screening to detect biological activity, in: Biomedical Importance of Marine Organisms (Memoirs of the California Academy of Sciences Number 13; D. G. Fautin, ed.), California Academy of Sciences, San Francisco, pp. 13–22.Google Scholar
  96. Rinehart, K. L., 19886, Didemnin and its biological properties, in: Peptides, Chemistry and Biology (Proceedings of the Tenth American Peptide Symposium; G. R. Marshall, ed.), ESCOM, Leiden, pp. 626–631.Google Scholar
  97. Rinehart, K. L., 1988c, Bioactive metabolites from the Caribbean Sponge Agelas coniferin, U.S. Patent 4,737,510, April 12, 1988 [Chem. Abstr. 109:216002u].Google Scholar
  98. Rinehart, K. L., 1989, Biologically active marine natural products, Pure Appl. Chem. 61: 525–528.Google Scholar
  99. Rinehart, K. L., 1990, Novel Anti-Viral and Cytotoxic Agents, U.S. Patent Application P-82,663Google Scholar
  100. December B, 1990; British Patent Application 8922026.3, September 29, 1989.Google Scholar
  101. Rinehart, K. L., 1992, Antiviral agents from novel marine and terrestrial sources, in: Innovations in Antiviral Development and the Detection of Virus Infections ( L. R. Walsh, T. M. Block, R. L. Crowell, and D. L. Jungkind, eds.), Plenum Press, New York, pp. 41–60.Google Scholar
  102. Rinehart, Jr., K. L., and Shield, L. S., 1983, In search of tunicates: Source of an antitumor compound, Aquasphere J. N. Engl. Aquarium 17: 8–13.Google Scholar
  103. Rinehart, Jr., K. L., Johnson, R. D., Paul, I. C., McMillan, J. A., Siuda, J. F., and Krejcarek, G. E., 1976, Identification of compounds in selected marine organisms by gas chromatography-mass spectrometry, field desorption mass spectrometry, and other physical methods, in: Food-Drugs from the Sea Conference Proceedings 1974 ( H.H. Webber and G. D. Ruggieri, eds.), Marine Technology Society, Washington, D.C., pp. 434–442.Google Scholar
  104. Rinehart, Jr., K. L., Shaw, P. D., Shield, L. S., Gloer, J. B., Harbour, G. C., Koker, M. E. S., Samain, D., Schwartz, R. E., Tymiak, A. A., Weller, D. L., Carter, G. T, Munro, M. H. G., Hughes, Jr., R. G., Renis, H. E., Swynenberg, E. B., Stringfellow, D. A., Vavra, J. J., Coats, J. H., Zurenko, G. E., Kuentzel, S. L., Li, L. H., Bakus, G. J., Brusca, R. C., Craft, L. L., Young, D. N., and Connor, J. L., 198la, Marine natural products as sources of antiviral, antimicrobial, and antineoplastic agents, Pure Appl. Chem. 53: 795–817.Google Scholar
  105. Rinehart, Jr., K. L., Gloer, J. B., Cook, Jr., J. C., Mizsak, S. A., and Scahill, T. A., 1981b, Structures of the didemnins, antiviral and cytotoxic depsipeptides from a Caribbean tunicate, J. Am. Chem. Soc. 103: 1857–1859.Google Scholar
  106. Rinehart, Jr., K. L., Gloer, J. B., Hughes, Jr., R. G., Renis, H. E., McGovren, J. P, Swynenberg, E. B., Stringfellow, D. A., Kuentzel, S. L., and Li, L. H., 1981c, Science 22: 933–935.Google Scholar
  107. Rinehart, Jr., K. L., Harbour, G. C., Graves, M. D., and Cheng, M. T, 1983a, Synthesis of hexahydropolyandrocarpidine (a revised structure), Tetrahedron Lett. 1983: 1593–1596.Google Scholar
  108. Rinehart, Jr., K. L., Gloer, J. B., Wilson, G. R., Hughes, Jr., R. G., Li, L. H., Renis, H. E., McGovren, J. P, 1983b, Antiviral and antitumor compounds from tunicates, Fed. Proc. 42: 87–90.PubMedGoogle Scholar
  109. Rinehart, Jr., K. L., Kobayashi, J., Harbour, G. C., Hughes, Jr., R. G,. Mizsak, S. A., and Scahill, T. A., 1984, Eudistomins C, E, K, and L, potent antiviral compounds containing a novel oxathiazepine ring from the Caribbean tunicate Eudistoma olivaceum, J. Am. Chem. Soc. 106: 1524–1526.Google Scholar
  110. Rinehart, Jr., K. L., Harbour, G. C., and Kobayashi, J, 1986, Antiviral Eudistomins from a Marine lùnicate, U.S. Patent No. 4,631,149, December 23, 1986; European Patent Application EP 133,000, February 13, 1985 [Chem. Abstr. 102:226023w].Google Scholar
  111. Rinehart, K. L., Kishore, V., Nagarajan, S., Lake, R. J., Gloer, J. B., Bozich, F. A., Li, K.-M., Maleczka, Jr., R. E., Todsen, W. L., Munro, M. H. G., Sullins, D. W., and Sakai, R., 1987a, Total synthesis of didemnins A, B, and C, J. Am. Chem. Soc. 109: 6846–6848.Google Scholar
  112. Rinehart, Jr., K. L., Kobayashi, J., Harbour, G. C., Gilmore, J., Mascal, M., Holt, T. G., Shield, L. S., and Lafargue, E, 1987b, Eudistomins A-Q, ß-carbolines from the antiviral Caribbean tunicate Edistoma olivaceum, J. Am. Chem. Soc. 109: 3378–3387.Google Scholar
  113. Rinehart, K. L., Holt, T. G., Fregeau, N. L., Keifer, P. A., Wilson, G. R., Perun, Jr., T. J., Sakai, R., Thompson, A. G., Stroh, J. G., Shield, L. S., Seigler, D. S., Li, L. H., Martin, D. G., Grimmelikhuijzen, C. J. E, and Gäde, G., 1990a, Bioactive compounds from aquatic and terrestrial sources, J. Nat. Prod. 53: 771–792.PubMedGoogle Scholar
  114. Rinehart, K. L., Sakai, R., Holt, T. G., Fregeau, N. L., Perun, Jr., T. J., Seigler, D. S., Wilson, G. R., and Shield, L. S., 1990b, Biologically active natural products, Pure Appl. Chem. 62: 1277–1280.Google Scholar
  115. Rinehart, K. L., Sakai, R., Stroh, J. G., 1990c, Novel Cytotoxic Cyclic Depsipeptides from the 3hnicate Trididemnum solidum, U.S. Patent No. 4,948,791, August 14, 1990 [Chem. Abstr. 114: 214413h].Google Scholar
  116. Rothschild, H., Allison, Jr., F., and Howe, C., 1978, Human Diseases Caused by Viruses. Recent Developments, Oxford University Press, Oxford.Google Scholar
  117. Sakai, R., 1991, Biologically Active Compounds from Tunicates and a Sponge. Ph.D. Thesis, University of Illinois, Urbana, Illinois.Google Scholar
  118. Sakai, R., and Higa, T., 1987, Tubastrine, a new guanidinostyrene from the coral Tubastrea aurea, Chem. Lett. 1987: 127–128.Google Scholar
  119. Sakai, R., Higa, T., and Kashman, Y., 1986, Misakinolide-A, an antitumor macrolide from the marine sponge Theonella sp., Chem. Lett. 1986: 1499–1502.Google Scholar
  120. Sakemi, S., Higa, T., Jefford, C. W, and Bernardinelli, G., 1986, Venustatriol, a new, anti-viral, triterpene tetracyclic ether from Laurencia venusta, Tetrahedron Lett. 27: 4287–4290.Google Scholar
  121. Sakemi, S., Ichiba, T, Kohmoto, S., Saucy, G., and Higa, T., 1988, Isolation and structure elucidation of onnamide A, a new bioactive metabolite of a marine sponge, Theonella sp., J. Am. Chem. Soc. 110: 4851–4853.Google Scholar
  122. Santoro, M. G., Benedetto, A., Carruba, G., Garaci, E., and Jaffe, B. M., 1980, Prostaglandin A compounds as antiviral agents, Science 209: 1032–1034.PubMedGoogle Scholar
  123. Sarin, P. S., Sun, D., Thornton, A., and Müller, W. E. G., 1987, Inhibition of replication of the etiologic agent of acquired immune deficiency syndrome (human T-lymphotropic retrovirus/lymphadenopathy-associated virus) by avarol and avarone, J. Natl. Cancer Inst. 78: 663–666.PubMedGoogle Scholar
  124. Schroeder, A. C., Hughes, Jr., R. G., and Block, A., 1981, Synthesis and biological effects of acyclic pyrimidine nucleoside analogues, J. Med. Chem. 24: 1078–1083.PubMedGoogle Scholar
  125. Shaw, P. D., McClure, W. O., Van Blaricom, G., Sims, J., Fenical, W, and Rude, J., 1976, Antimicrobial activities from marine organisms, in: Food-Drugs from the Sea 1974 ( H. H. Webber and G. D. Ruggieri, eds.), Marine Technology Society, Washington, D.C., pp. 429–433.Google Scholar
  126. Shimizu, Y., 1971, Antiviral substances in starfish, Experientia 27: 1188–1189.Google Scholar
  127. Snader, K. M., and Higa, T., 1986a, Antiviral and Antitumor Cyclohexadienone Compositions, PCT International Application WO 86 03,738, July 3, 1986; U.S. Patent Application 682,278, December 17, 1984 [Chem. Abstr. 105:150026p].Google Scholar
  128. Snader, K. M., and Higa, T, 19866, Antiviral Chamigrene Derivative, PCT International Application WO 86 03,739, July 3, 1986; U.S. Patent Application 682,896, December 18, 1984 [Chem. Abstr. 106: 1 2959q ].Google Scholar
  129. Stephen, E. L., Jones, D. E., Peters, C. J., Eddy, G. A., Loizeaux, P S., and Jahrling, P B., 1980, Ribavirin treatment of toga-, arena-and bunyavirus infections in subhuman primates and other laboratory animal species, in: Ribavirin: A Broad Spectrum Antiviral Agent ( R. A. Smith and W Kirkpatrick, eds.), Academic Press, New York, pp. 169–183.Google Scholar
  130. Stierle, D. B., Carté, B., Faulkner, D. J., Tagle, B., and Clardy, J., 1980, The asbestinins, a novel class of diterpenes from the gorgonian Briareum asbestinum, J. Am. Chem. Soc. 102: 5088–5092.Google Scholar
  131. Still, I. W. J., and Strautmanis, J. R., 1989, Synthesis of N(10)-acetyleudistomin L, Tetrahedron Lett. 30: 1041–1044.Google Scholar
  132. Suzuki, T., Suzuki, M., Furusaki, A., Matsumoto, T, Kato, A., Imanaka, Y., and Kurosawa, E., 1985, Teurilene and thyrsiferyl 23-acetate, meso and remarkably cytotoxic compounds from the marine red alga Laurencia obtusa (Hudson) Lamouroux, Tetrahedron Leu. 26: 1329–1332.Google Scholar
  133. Suzuki, T., Takeda, S., Suzuki, M., Kurosawa, E., Kato, A., and Imanaka, Y., 1987, Cytotoxic squalene-derived polyethers from the marine red alga Laurencia obtusa (Hudson) Lamouroux, Chem. Lett. 1987: 361–364.Google Scholar
  134. Tsujii, S., Rinehart, K. L., Gunasekera, S. P., Kashman, Y., Cross, S. S., Lui, M. S., Pomponi, S. A., and Diaz, M. C., 1988, Topsentin, bromotopsentin, and dihydrodeoxybromotopsentin: Antiviral and antitumor bis(indolyl)imidazoles from Caribbean deep-sea sponges of the family Halichondriidae. Structural and synthetic studies, J. Org. Chem. 53: 5446–5453.Google Scholar
  135. Walker, R. P., Faulkner, D. J., Van Engen, D., and Clardy, J., 1981, Sceptrin, an antimicrobial agent from the sponge Agelas sceptrum, J. Am. Chem. Soc. 103: 6772–6773.Google Scholar
  136. Walker, R. T., De Clercq, E., and Eckstein, F. (eds.), 1979, Nucleoside Analogues. Chemistry, Biology, and Medical Applications (NATO Advanced Study Institute on Nucleoside Analogues, 1979, Urbino), Plenum Press, New York.Google Scholar
  137. Wright, A. E., McCarthy, P., Cross, S. S., Rake, J. B., and McConnell, O. J., 1988, Sesquiterpenoid Isocyanide Purification from a Marine Sponge and Its Use As a Neoplasm Inhibitor, Virucide, and Fungicide, European Patent Application EP 285,302, October 5, 1988; U.S. Patent Application 32,289, March 30, 1987 [Chem. Abstr. 111:50414u].Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Kenneth L. Rinehart
    • 1
  • Lois S. Shield
    • 1
  • Martha Cohen-Parsons
    • 1
  1. 1.Department of ChemistryUniversity of IllinoisUrbanaUSA

Personalised recommendations