Advertisement

An Overview of Immunological and Genetic Methods for Detecting Swine Coronaviruses, Transmissible Gastroenteritis Virus, and Porcine Respiratory Coronavirus in Tissues

  • Theerapol Sirinarumitr
  • Prem S. Paul
  • Patrick G. Halbur
  • John P. Kluge
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 412)

Summary

Transmissible gastroenteritis (TGE) is an enteric disease of swine caused by a coronavirus, designated as transmissible gastroenteritis virus (TGEV). Commonly used methods for TGEV detection include viral isolation and detection of the viral antigen by indirect immunofluorescence (IFA), immunoperoxidase, and immunogold silver staining. Each of these techniques has some advantages and disadvantages. In general IFA and immunohistochemistry are preferred over viral isolation as TGEV isolation is not very reliable because not all field isolates replicate in cell cultures. The diagnosis of TGEV has become more complicated since the emergence of porcine respiratory coronavirus (PRCV). PRCV is believed to be a TGEV mutant, and can not be easily differentiated from TGEV by immunological tests. Nucleic acid probes and polymerase chain reaction (PCR) have successfully been used to detect and differentiate these viruses. These techniques can detect viral nucleic acids in the specimen but do not provide information on the cell types infected by these viruses. Recently we have developed isotopic and nonisotopic in situ hybridization techniques (ISH) for the detection of these viral nucleic acids in formalin-fixed paraffin-embedded tissues. Furthermore, this procedure can differentiate between TGEV-and PRCV-infected cells. By ISH, TGEV is detected in the mature absorptive enterocytes of tissues infected by TGEV and the crypt epithelial cells are also infected but to a lesser extent. For PRCV, the main infected cells are epithelial cells of the bronchioles, type II pneumocytes, and alveolar and septal macrophages. ISH is an excellent tool for studying molecular pathogenesis of these two viruses especially when used in combination with immunohistochemistry.

Keywords

Viral Nucleic Acid Direct Fluorescence Antibody Bronchiolar Epithelial Cell Transmissible Gastroenteritis Virus Feline Infectious Peritonitis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bohl, E. H., and Pensaert, M. B., 1989, Transmissible gastroenteritis virus (classical enteric variant) and transmissible gastroenteritis virus (respiratory variant). In: M. B. Pensaert (Ed), Virus infections of porcines, Elsevier Science Publishers B.N., Amsterdam, pp. 139–165.Google Scholar
  2. Britton, P., Mawditt, K. L., and Page, K. W., 1991, The cloning and sequencing of the virion protein genes from a British isolate of porcine respiratory coronavirus: comparison with transmissible gastroenteritis virus genes, Virus Res. 21: 181–198.CrossRefPubMedGoogle Scholar
  3. Britton, P., and Page, K. W., 1990, Sequence of the S gene from a virulent British field isolate of transmissible gastroenteritis virus, Virus Res. 18: 71–80.CrossRefPubMedGoogle Scholar
  4. Callebaut, P., Correa, I., Pensaert, M., et al., 1988, Antigenic differentiation between transmissible gastroenteritis virus of swine and a related porcine respiratory coronavirus, J. Gen. Vim!. 69: 1725–1730.CrossRefGoogle Scholar
  5. Chu, R. M., Li, N. J., Glock, R. D., and Ross, R. F., 1982, Application of peroxidase-antiperoxidase staining technique for detection of transmissible gastroenteritis virus in pigs, Am. J. Vet. Res. 43: 77–81.PubMedGoogle Scholar
  6. Cox, E., Hooybergh, J., and Pensaert, M. B., 1990, Sites of replication of a porcine respiratory coronavirus related to transmissible gastroenteritis virus, Res. Vet. Sci. 48: 165–169.PubMedGoogle Scholar
  7. Delmas, B., Gelfi, J., and L’Haridon, R., et al., 1992, Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV, Nature. 357: 417–420.CrossRefPubMedGoogle Scholar
  8. Doyle, L. P., and Hutchings, L. M., 1946, A transmissible gastroenteritis in pigs, J. Am. Vet. Med. Assoc. 08: 257–259.Google Scholar
  9. Frederick, G. I., Bohl, E. H., and Cross, J. E., 1976, Pathogenicity of an attenuated strain of transmissible gastroenteritis virus for newborn pigs, Am. J. Vet. Res. 42: 1163–1169.Google Scholar
  10. Halbur, P. G., Paul, P. S., Vaughn, E. M., and Andrews, J. J., 1993, Experimental reproduction of pneumonia in gnotobiotic pigs with porcine respiratory coronavirus isolate AR310, J. Vet. Diagn. Invest. 5: 184–188.CrossRefPubMedGoogle Scholar
  11. Halbur, R. G., Andrews, J. J., Huffman, E. L., et al., 1994, Development of a streptavidin-biotin immunoperoxidase for the detection of porcine reproductive and respiratory syndrome virus antigen in porcine lung, J. Vet. Diagn. Invest. 6: 254–257.CrossRefPubMedGoogle Scholar
  12. Hill, H. T., Biwer, J. D., Woods, R. D., and Wesley, R. D., 1989, Porcine respiratory coronavirus isolated from two U.S. swine herds, Proc. Am. Assoc. Swine. Pract. 333–335.Google Scholar
  13. Horzinek, M. C., Lutz, H., and Pedersen, N. C., 1982, Antigenic relationships among homologous structure polypeptides of porcine, feline, and canine coronaviruses, Infect. Immun. 37: 1148–1155.PubMedGoogle Scholar
  14. Jackwood, D. J., Bae, I., Jackwood, R. J. et al., 1993, Transmissible gastroenteritis virus and porcine respiratory coronavirus molecular characterization of the S gene using cDNA probes and nucleotide sequence analysis, Adv. Exp. Med. Biol. 342: 43–48.CrossRefPubMedGoogle Scholar
  15. L., Hemperly, J. J., and Lloyd, R. V., 1991, Expression of neural cell adhesion molecule in normal and neo-plastic human neuroendocrine tissues, Am. J. Pathol. 138: 961–969.Google Scholar
  16. La Bonnardiere, C., and Laude, H., 1983, Interferon induction in rotavirus and coronavirus infections: a review of recent results, Ann. Rech. Vet. 14: 507–511.PubMedGoogle Scholar
  17. Larochelle, R., and Mogar, R., 1993, The application of immunogold silver staining (IGSS) for the detection of the transmissible gastroenteritis virus in fixed tissue, J. Vet. Diagn. Invest. 5: 16–20.CrossRefPubMedGoogle Scholar
  18. Laude, H., Van Reeth, K., and Pensaert, M., 1993, Porcine respiratory coronavirus: molecular features and virus-host interactions, Vet.Res. 24: 125–150.PubMedGoogle Scholar
  19. Morin, M., Morehouse, L. G., Solorzano, R. F., and Olsen, L. D., 1973, Transmissible gastroenteritis in feeder swine: clinical, immunofluorescence and histopathological observations, Can. J. Comp. Med. 37: 239–248.PubMedGoogle Scholar
  20. O’Toole, D., Brown, I., Bridges, A., and Cartwright, S. F., 1989, Pathogenicity of experimental infection with `pneumotropic` porcine respiratory coronavirus, Res. Vet. Sci. 47: 23–29.PubMedGoogle Scholar
  21. Paul, R. S., Halbur, R. G., and Vaughn, E. M., 1994, Significance of porcine respiratory coronavirus infection, Compend. Cont. Educ. Pract. Vet. 16: 1223–1234.Google Scholar
  22. Paul, R. S., Vaughn, E. M., and Halbur, P. G., 1992, Characterization and pathogenicity of a new porcine respiratory coronavirus strain AR310, Proc. Int. Pig. Vet. Soc. Congr. 12: 92Google Scholar
  23. Pensaert, M. B., Callebaut, R, and Vergote, J., 1986, Isolation of a porcine respiratory non-enteric coronavirus related to transmissible gastroenteritis, Vet. Quart. 8: 257–261.CrossRefGoogle Scholar
  24. Pensaert, M. B., Haelterman, E. O., and Hinsman, E. J., 1970, Transmissible gastroenteritis of swine: Virus-intestinal cell interactions. 11. Electron microscopy of the epithelium in isolated jejunal loops, Arch. Gesamte. Virusforsch. 31: 335–351.CrossRefPubMedGoogle Scholar
  25. Rassachaert, D., Duarte, M., and Laude, H., 1990, Porcine respiratory coronavirus differs from transmissible gastroenteritis virus by a few genomic deletions, J. Gen. Virol. 71: 2599–2607.CrossRefGoogle Scholar
  26. Rassachaert, D., and Laude, H., 1987, The predicted primary structure of the peplomer protein E2 of the porcine coronavirus transmissible gastroenteritis virus, J. Gen. Virol. 68: 1883–1890.CrossRefGoogle Scholar
  27. Rossen, J. W., Bekker, C. R, Voorhout, W. F. and et al., 1994, Entry and release of transmissible gastroenteritis coronavirus are restricted to apical surfaces of polarized epithelial cells, J. Virol. 68: 7966–7973.PubMedGoogle Scholar
  28. Saif, L. J., and Wesley, R. D., 1994, Transmissible gastroenteritis, In: A. D. Leman, B. E. Strauss, W. L. Mengeling, S. D. Allaire, D. J. Taylor (Eds), Diseases of swine, 7th ed., Iowa State University Press, Ames, IA, pp. 362–386.Google Scholar
  29. Sanchez, C. M., Gebauer, F., Sune, C., and Mendez, A. et al., 1992, Genetic evolution and tropism of transmissible gastroenteritis coronavirus, Virol. 190: 92–105.CrossRefGoogle Scholar
  30. Sherpherd, R. W., Butler, D. G., Cutz, E., and Gall, D. G., 1979, The mucosal lesion in viral enteritis: extent and dynamics of the epithelial response to virus invasion in transmissible gastroenteritis of piglets, Gastroenterology 76: 770–777.Google Scholar
  31. Shockley, L. J., Kapke, P. A., Lapps, W., and Brian, D. A. et al., 1987, Diagnosis of porcine and bovine enteric coronavirus infections using cloned cDNA probes, J. Clin. Micro. 25: 1591–1596.Google Scholar
  32. Sirinarumitr, T., Paul, R S., Kluge, J. P., and Halbur, P. G., 1996, In situ hybridization technique for the detection of swine enteric and respiratory coronaviruses, transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus (PRCV), in the formalin-fixed paraffin-embedded tissues, J. Virol. Methods. 56: 149–160.Google Scholar
  33. Spaan, W., Cavanagh, D., and Horzinek, M. C., 1988, Coronaviruses: structure and genome expression, J. Gen. Viro1. 69: 2939–2952.CrossRefGoogle Scholar
  34. Thake, D. C., 1968, Jejuna! epithelium in transmissible gastroenteritis of swine (an electron microscopic and histochemical study), Am. J. Pathol. 53: 149–168.PubMedGoogle Scholar
  35. Van Nieustadt, A. P., and Pol, J. M. A., 1989, Isolation of a TGE virus-related respiratory coronavirus causing fatal pneumonia in pig, Vet. Rec. 124: 43–44.CrossRefGoogle Scholar
  36. Vaughn, E. M., Halbur, P. G., and Paul, P. S., 1996, The use of nonradioactive cDNA probes to differentiate porcine respiratory coronavirus and transmissible gastroenteritis virus isolates, J. Vet. Diagn. Invest.Google Scholar
  37. Vaughn, E. M., Halbur, P. G., and Paul, R. S., 1995, Sequence comparison of porcine respiratory coronavirus isolates reveals heterogeneity in the S, 3, 3–1 genes, J. VIrol. 69: 3176–3184.PubMedGoogle Scholar
  38. Vaughn, E. M., Halbur, R. G., and Paul, P. S., 1994, Three new isolates of porcine respiratory coronavirus with various pathogenicities and spike (S) gene deletions, J. Clin. Microbiol 69: 1809–1812.Google Scholar
  39. Vaughn, E. M., and Paul, P. S., 1993, Antigenic and biological diversity among transmissible gastroenteritis virus isolates of swine. Vet. Microbial. 36: 333–347.CrossRefGoogle Scholar
  40. Wagner, J. E., Beamer, R D., and Restic, M., 1973, Electron microscopy of intestinal epithelial cells of piglets infected with a transmissible gastroenteritis virus, Can. J. Comp. Med. 37: 177–188.PubMedGoogle Scholar
  41. Wesley, R. D., Woods, R. D., Hill, H. T., and Biwer, J. D., 1990, Evidence for a respiratory coronavirus antigenically similar to transmissible gastroenteritis in the United States, J. Vet. Diagn. Invest. 2: 312–317.CrossRefPubMedGoogle Scholar
  42. Wesley, R. D., Woods, R. D., and Cheung, A. K., 199la, Genetic basis for the pathogenesis of transmissible gastroenteritis virus, J. l Irol. 64: 4761–4768.Google Scholar
  43. Wesley, R. D., Wesley, I. V., and Woods, R. D., 199 lb, Differentiation between transmissible gastroenteritis virus and porcine respiratory coronavirus using a cDNA probe, J. Vet. Diagn. Invest. 3: 29–32.Google Scholar
  44. Weingartl, H., and Derbyshire, J. B., 1994, Evidence of a putative second receptor for porcine transmissible gastroenteritis virus on the villous enterocytes of newborn pigs, J. Viro!. 68: 7253–7259.Google Scholar
  45. Weingartl, H., and Derbyshire, J. B., 1993, Binding of porcine transmissible gastroenteritis virus by enterocytes from newborn and weaned piglets, Vet. Microbiol. 35: 1163–1169.CrossRefGoogle Scholar
  46. Woods, R. D., Cheville, N. F., and Gallagher, J. E., 1981, Lesions in the small intestines of newborn pigs inoculated with porcine, feline, and canine coronavirus, Am. J. Vet. Res. 42: 1163–1169.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Theerapol Sirinarumitr
    • 1
    • 3
  • Prem S. Paul
    • 1
  • Patrick G. Halbur
    • 2
  • John P. Kluge
    • 3
  1. 1.College of Veterinary Medicine Veterinary Medical Research InstituteIowa State UniversityAmesUSA
  2. 2.College of Veterinary Medicine Veterinary Diagnostic LaboratoryIowa State UniversityAmesUSA
  3. 3.College of Veterinary Medicine Veterinary PathologyIowa State UniversityAmesUSA

Personalised recommendations