Dianthoviruses: Properties, Molecular Biology, Ecology, and Control

  • R. I. Hamilton
  • J. H. Tremaine
Part of the The Viruses book series (VIRS)


The genus Dianthovirus consists of three definitive species: carnation ring-spot virus (CRSV) (the type species), red clover necrotic mosaic virus (RCNMV), and sweet clover necrotic mosaic virus (SCNMV) (Francki et al., 1991). A possible fourth species is furcraea necrotic streak virus (FNSV), which is serologically related to RCNMV and hybridizes with cDNA clones to each of the two RCNMV genomic RNA species (Morales et al., 1992). The genus name is derived from Dianthus, the generic name of carnation (D. caryophyllus), which is the most common natural host of CRSV. Dianthovirus particles are isometric, 33 nm in diameter, and sediment as a single species with a sedimentation coefficient (s 20, w) of about 133 S at pH 5.0. They contain a single capsid protein with molecular weight of approximately 37 × 103 and two major genomic RNA species with molecular weights of approximately 1.5 × 106 (RNA-1) and 0.5 × 106 (RNA-2). Dianthovirus particles are stable and easily purified with yields up to 100 mg/kg of infected tissue, and are thus well suited to studies of virus structure and replication. However, di anthoviruses have not been studied as intensively as other plant viruses with bipartite genomes, probably because they do not usually cause serious crop losses. Two comprehensive reviews on the properties of the dianthoviruses have been published within the last few years (Hiruki, 1987; Giesman-Cookmeyer et al., 1995) that attest to recent interest in this genus of plant viruses.


Sodium Dodecyl Sulfate Capsid Protein Plant Virus White Clover Sweet Clover 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allison, R. F., Janda, M., and Ahlquist, P., 1989, Sequence of cowpea chlorotic mottle virus RNAs 2 and 3 and evidence of a recombination event during bromovirus evolution, Virology 172:321.PubMedCrossRefGoogle Scholar
  2. Altschuh, D., and Van Regenmortel, M. H. V., 1983, Refutation of the alleged antigenic relationship between an isometric and a rod shaped plant virus, Int. J. Microbiol. 1:13.Google Scholar
  3. Atkins, J. F., Weiss, R. B., and Gesteland, R. F., 1990, Ribosome gymnastics—degree of difficulty 9.5, style 10.0, Cell 62:413.PubMedCrossRefGoogle Scholar
  4. Barton, R. J., 1981, Analysis of virus capsid polypeptides, Rep. Glasshouse Crops Res. Inst. 1980:151.Google Scholar
  5. Bennet, P. R., and Milne, K. S., 1976, Carnation viruses in New Zealand, Acta. Hortic. 59:61.Google Scholar
  6. Bercks, R., and Querfurth, G., 1972, Serologische Beziehungen von cocksfoot mild mosaic virus und carnation ringspot virus zu Viren der turnip yellow mosaic virus-Gruppe, Phytopathol. Z. 75:215.CrossRefGoogle Scholar
  7. Bowen, R., and Plumb, R. T., 1979, The occurrence and effects of red clover necrotic mosaic virus in red clover (Trifolium pratense), Ann. Appl. Biol. 91:227.CrossRefGoogle Scholar
  8. Bremer, K., and Lahdenpera, M.-L., 1981, Virus diseases in carnation and chrysanthemum cuttings imported into Finland, Ann. Agriculturae Fenniae 20:214.Google Scholar
  9. Brierley, I., Digard, P., and Inglis, S. C., 1989, Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot, Cell 57:548.CrossRefGoogle Scholar
  10. Brierley, P., 1964, Heat cure of carnation viruses, Plant Dis. Rep. 48:143.Google Scholar
  11. Brown, D. J. F., and Trudgill, D. L., 1984, The spread of carnation ringspot virus in soil with or without nematodes, Nematologica 30:102.CrossRefGoogle Scholar
  12. Campbell, R. N., and Sim, S. T., 1994, Host specificity and nomenclature of Olpidium bornovanus (= Olpidium radicale) and comparisons to O. brassicae, Can. J. Bot. 72:1136.CrossRefGoogle Scholar
  13. Carrington, J. C., Morris, T. J., Stockley, P. G., and Harrison, S. C., 1987, Structure and assembly of turnip crinkle virus. IV. Analysis of the coat protein gene and implications of the subunit primary structure, J. Mol. Biol. 194:265.PubMedCrossRefGoogle Scholar
  14. Casper, R., 1976, Natural occurrence of cucumber mosaic virus with plum pox virus (Sharka) and prunus necrotic ringspot virus in plum, Mitt. Biol. Bundesanst. Land-u.Forstwirtsch. 170:33.Google Scholar
  15. Citovsky, V., Wong, M.-L., Shaw, A. L., Venkataram Prasad, B. V., and Zambryski, P., 1992, Visualization and characterization of tobacco mosaic virus movement protein binding to single-stranded nucleic acids, Plant Cell 4:397.PubMedGoogle Scholar
  16. Dabek, A. J., and Castaño, J. J., 1978, The occurrence, symptomatology, transmission and virus aetiology of macana disease of fique (Furcraea spp.) in Colombia, South America, Phytopathol Z. 92:57.CrossRefGoogle Scholar
  17. Dodds, J. A., Tremaine, J. H., and Ronald, W. P., 1977, Some properties of carnation ringspot virus single-and double-stranded ribonucleic acid, Virology 83:322.PubMedCrossRefGoogle Scholar
  18. Dodds, J. A., Morris, T. J., and Jordan, R. L., 1984, Plant viral double-stranded RNA, Annu. Rev. Phytopathol. 22:151.CrossRefGoogle Scholar
  19. Dolja, V. V., and Koonin, D. V., 1991, Phylogeny of capsid proteins of small icosahedral RNA plant viruses, J. Gen. Virol. 72:1481.PubMedCrossRefGoogle Scholar
  20. Francki, R. I. B., Milne, R. G., and Hatta, T., 1985, Atlas of Plant Viruses, Vol. II, CRC Press, Boca Raton, FL.CrossRefGoogle Scholar
  21. Francki, R. I. B., Fauquet, C. M., Knudson, D. L., and Brown, F. (eds.), 1991, Classification and Nomenclature of Viruses: Fifth Report of the International Committee on Taxonomy of Viruses, Springer-Verlag, Vienna (also in Arch. Virol. Suppl. 2).Google Scholar
  22. Fritzsche, R., 1968, Ökologie und Vektoreignung von Longidorus macrosoma Hooper, Biol Zentralbl. 87:139.Google Scholar
  23. Fritzsche R., and Schmelzer, K., 1967, Übertragbarkeit des Nelkenringflecken Virus durch Nematoden, Naturwissenschaften 54:498.PubMedCrossRefGoogle Scholar
  24. Fritzsche, R., Kegler, H., Thiele, S., and Gruber, G., 1979, Beitrag zur Epidemiologie und Übertragung des Nelkenringflecken-Virus in Obstbestanden, Arch. Phytopathol. Pflanzenschutz 15:177.CrossRefGoogle Scholar
  25. Fujiwara, T, Giesman-Cookmeyer, D., Ding, B., Lommel, S. A., and Lucas, W. J., 1993, Cell-to-cell trafficking of macromolecules through plasmodesmata potentiated by the red clover necrotic mosaic virus movement protein, Plant Cell 5:1783.PubMedGoogle Scholar
  26. Gallo, J., and Musil, M., 1984a, Serotypes of red clover necrotic mosaic virus. III. Immuno-electrophoresis under different conditions, Acta Virol. 28:78.PubMedGoogle Scholar
  27. Gallo, J., and Musil, M., 1984b, Isoelectric points of red clover necrotic mosaic virus serotypes, Acta Virol. 28:82.PubMedGoogle Scholar
  28. Ge, Z., and Hiruki, C., 1993, The infectious transcripts of sweet clover necrotic mosaic virus bipartite genome constructed by the polymerase chain reaction, Proc. Japan Acad. Ser. B 69:113.CrossRefGoogle Scholar
  29. Ge, Z., Hiruki, C., and Roy, K. L., 1992, A comparative study of the RNA-2 nucleotide sequences of two sweet clover necrotic mosaic virus strains, J. Gen. Virol. 73:2483.PubMedCrossRefGoogle Scholar
  30. Ge, Z., Hiruki, C., and Roy, K. L., 1993, Nucleotide sequence of sweet clover necrotic mosaic dianthovirus RNA-1, Virus Res. 28:113.PubMedCrossRefGoogle Scholar
  31. Gerhardson, B., and Insunza, V, 1979, Soil transmission of red clover necrotic mosaic virus, Phytopathol. Z. 94:67.CrossRefGoogle Scholar
  32. Gerhardson, B., and Lindsten, K., 1973, Red clover mottle virus and red clover necrotic mosaic virus in Sweden, Phytopathol. Z. 76:67.CrossRefGoogle Scholar
  33. Giesman-Cookmeyer, D., and Lommel, S. A., 1993, Alanine scanning mutagenesis of a plant virus movement protein identifies three functional domains, Plant Cell 5:973.PubMedGoogle Scholar
  34. Giesman-Cookmeyer, D., Kim, K.-H., and Lommel, S. A., 1995, Dianthoviruses, in: Pathogenesis and Host-Specificity in Plant Diseases: Histopathological, Biochemical, Genetic and Molecular Basis. Vol. 3: Viruses and Viroids (R. P. Singh, U. S. Singh, and K. Kohmoto, eds.), Pergamon Press, Oxford pp. 157–176.Google Scholar
  35. Gould, A. R., Francki, R. I. B., Hatta, T., and Hollings, M., 1981, The bipartite genome of red clover necrotic mosaic virus, Virology 108:499.PubMedCrossRefGoogle Scholar
  36. Hatta, T, and Francki, R. I. B., 1984, Differences in the morphology of isometric particles of some plant viruses stained with uranyl acetate as an aid to their identification, J. Virol. Methods 9:237.PubMedCrossRefGoogle Scholar
  37. Hiruki, C., 1986a, Incidence and geographic distribution of sweet clover necrotic mosaic virus in Alberta, Plant Dis. 70:1129.CrossRefGoogle Scholar
  38. Hiruki, C., 1986b, Sweet clover necrotic mosaic virus, AAB Descriptions of Plant Viruses No. 321.Google Scholar
  39. Hiruki, C., 1987, The dianthoviruses: A distinct group of isometric plant viruses with bipartite genome, Adv. Virus Res. 33:257.PubMedCrossRefGoogle Scholar
  40. Hiruki, C., and Figueiredo, G., 1985, Monoclonal antibodies and their use in the study of dianthoviruses, Acta Hortic. 164:217.Google Scholar
  41. Hiruki, C., Rao, A. L. N., Furuya, Y, and Figueiredo, G., 1984a, Serological studies of dianthoviruses using monoclonal and polyclonal antibodies, J. Gen. Virol. 65:2273.CrossRefGoogle Scholar
  42. Hiruki, C., Rao, D. V., Chen, M. H., Okuno, T., and Figueiredo, G., 1984b, Characterization of sweet clover necrotic mosaic virus, Phytopathology 74:482.CrossRefGoogle Scholar
  43. Hiruki, C., Kudo, K., and Figueiredo, G., 1989, Transmission of sweet clover necrotic mosaic virus, Proc. Japan Acad. Ser. B 65:234.CrossRefGoogle Scholar
  44. Hiruki, C., Kakuta, H., Ge, Z., Figueiredo, G., and Mizutani, J., 1992, Viral genome delivery into detached and intact leaf tissues of Vigna unguiculata by RNA-coated gold particles using the improved particle gun, Proc. Japan Acad. Ser B 68:183.CrossRefGoogle Scholar
  45. Hollings, M., and Stone, O. M., 1965, Investigations of carnation viruses. II. Carnation ringspot, Ann. Appl. Biol. 56:73.CrossRefGoogle Scholar
  46. Hollings, M., and Stone, O. M., 1970, Carnation ringspot virus, CMI/AAB Descriptions of Plant Viruses No. 21.Google Scholar
  47. Hollings, M., and Stone, O. M., 1977, Red clover necrotic mosaic virus, CMI/AAB Descriptions of Plant Viruses No. 181.Google Scholar
  48. Hull, R., 1989, The movement of viruses in plants, Annu. Rev. Phytopathol. 27:213.CrossRefGoogle Scholar
  49. Inouye, N., and Hiruki, C., 1985, A new strain of sweet clover necrotic mosaic virus isolated from alfalfa, Ann. Phytopathol. Soc. Japan 51:82.Google Scholar
  50. Kalmakoff, J., and Tremaine, J. H., 1967, Some physical and chemical properties of carnation ringspot virus, Virology 33:10.PubMedCrossRefGoogle Scholar
  51. Kaper, J. M., 1975, The Chemical Basis of Virus Structure, Dissociation and Reassembly, North-Holland, Amsterdam.Google Scholar
  52. Kassanis, B., 1955, Some properties of four viruses isolated from carnation plants, Ann. Appl. Biol. 43:103.CrossRefGoogle Scholar
  53. Kassanis, B., and Woods, R. D., 1968, Aggregated forms of the satellite of tobacco necrosis virus, J. Gen. Virol. 2:395.CrossRefGoogle Scholar
  54. Kassanis, B., White, R. F., and Woods, R. F., 1973, Genetic complementation between middle and bottom components of two strains of radish mosaic virus, J. Gen. Virol. 20:277.CrossRefGoogle Scholar
  55. Kegler G., and Kegler, H., 1981, Beiträge zur Kenntnis der vektorlosen Übertragung pflanzenpathogener Viren, Arch. Phytopathol. Pflanzenschutz 17:307.CrossRefGoogle Scholar
  56. Kegler, H., Kleinhempel, H., and Stanarius, A., 1984, Evidence of infectious plant viruses after passage through the rodents alimentary tract, Arch. Phytopathol. Pfanzenschutz 20:189.CrossRefGoogle Scholar
  57. Kendall, T. L., and Lommel, S. A., 1992, Nucleotide sequence of carnation ringspot dianthovirus RNA-2, J. Gen. Virol. 73:2479.PubMedCrossRefGoogle Scholar
  58. Kim, K. H., and Lommel, S. A., 1994, Identification and analysis of the site of-1 ribosomal frameshifting in red clover necrotic mosaic virus, Virology 200:574.PubMedCrossRefGoogle Scholar
  59. Kleinhempel, H., Gruber, G., and Kegler, H., 1980, Investigations on carnation ringspot virus in fruit trees, Acta Phytopathol. Acad. Sci. Hung. 15:107.Google Scholar
  60. Koenig, R., 1986, Plant viruses in rivers and lakes, Adv. Virus Res. 31:321.PubMedCrossRefGoogle Scholar
  61. Koenig, R., 1988, Detection in surface waters of plant viruses with known and unknown natural hosts, in: Viruses with Fungal Vectors (J. I. Cooper and M. J. C. Asher, eds.), pp. 307–313, Association of Applied Biologists, Wellesbourne, UK.Google Scholar
  62. Koenig R., and Lesemann, D.-E., 1985, Plant viruses in German rivers and lakes. 1. Tombusviruses, a potexvirus and carnation mottle virus, Phytopathol. Z. 112:105.CrossRefGoogle Scholar
  63. Koenig, R., An, D., Lesemann, D.-E., and Burgermeister, W, 1988, Isolation of carnation ringspot virus from a canal near a sewage plant: cDNA hybridization analysis, serology and cytopathology, J. Phytopathol. 121:346.CrossRefGoogle Scholar
  64. Koenig, R., Rüdel, M., and Lesemann, D.-E., 1989, Detection of petunia asteroid mosaic, carnation ringspot and tobacco necrosis viruses in ditches and drainage canals in a grapevine-growing area of West Germany, J. Phytopathol. 127:169.CrossRefGoogle Scholar
  65. Koonin, E. V., 1991, The phylogeny of RNA-dependent RNA polymerases of positive-stranded RNA viruses, J. Gen. Virol. 72:2197.PubMedCrossRefGoogle Scholar
  66. Koonin, E. V., and Dolja, V. V., 1993, Evolution and taxonomy of positive-strand RNA viruses: Implications of comparative analysis of amino acid sequences, Crit. Rev. Biochem. Mol. Biol. 28:375.PubMedCrossRefGoogle Scholar
  67. Kowalska, A., 1974, Freeing carnation plants from viruses by meristem-tip culture, Phytopathol. Z. 79:301.CrossRefGoogle Scholar
  68. Kühne, T., and Eisbein, K., 1983, Untersuchungen zur Stabilität des Nelkenringflecken-Virus, Acta Phytopathol. Acad. Sci. Hung. 18:101.Google Scholar
  69. Kühne, T., Proll, E., and Reichenbacker, D., 1983, Aggregationseigenschaften des Nelkenring-flecken-Virus in vitro, Acta Phytopathol. Acad. Sci. Hung. 18:85.Google Scholar
  70. Lane, L. C., 1974, The bromoviruses, Adv. Virus Res. 19:151.PubMedCrossRefGoogle Scholar
  71. Lange, L., 1977, Interrelations between fungi and viruses, Plantesygdomme i Denmark 1976 92:68.Google Scholar
  72. Lewis, G. C., Heard, A. J., Gutteridge, R. A., Plumb, R. G., and Gibson, R. W., 1985, The effects of mixing Italian ryegrass [Lolium multiflorum) with perennial ryegrass (L. perenne) or red clover (Trifolium pratense) on the incidence of viruses, Ann. Appl. Biol. 106:483.CrossRefGoogle Scholar
  73. Lommel, S. A., 1983, Genome and Replicative Organization of Plant Dianthoviruses and Arkansas Bee Virus, Ph.D. Thesis, University of California, Berkeley.Google Scholar
  74. Lommel, S. A., McCain, A. H., Mayhew, D. E., and Morris, T. J., 1983, Survey of commercial carnation cultivars for four viruses in California by indirect enzyme-linked immunosorbent assay, Plant Dis. 67:53.CrossRefGoogle Scholar
  75. Lommel, S. A., Weston-Fina, M., Xiong, Z., and Lomonossoff, G. P., 1988, The nucleotide sequence and gene organization of red clover necrotic mosaic virus RNA-2, Nucleic Acids Res. 16:8587.PubMedCrossRefGoogle Scholar
  76. Longworth, J. F., 1978, Small isometric viruses of invertebrates, Adv. Virus Res. 23:103.PubMedCrossRefGoogle Scholar
  77. Lucas, W. J., and Wolf, S., 1993, Plasmodesmata: The intercellular organelles of green plants, Trends Cell Biol. 3:308.PubMedCrossRefGoogle Scholar
  78. Lyness, E. W., and Teakle, D. S., 1981, Red clover necrotic mosaic virus isolated from Trifolium repens and Medicago sativa in Victoria, Australasian Plant Pathol. 10:6.CrossRefGoogle Scholar
  79. MacFarlane, I., 1981, Putative vectors of RCNMV, Rep. Rothamsted Exp. Stn. 1980:188.Google Scholar
  80. MacFarlane, I., 1982, Virus transmission by fungi: Red clover necrotic mosaic virus (RCNMV), Rep. Rothamsted Exp. Stn. 1981:190.Google Scholar
  81. McLean, M. A., Campbell, R. N., Hamilton R. I., and Rochon, D. M., 1994, Involvement of the cucumber necrosis virus coat protein in the specificity of fungus transmission by Olpidium bornovanus, Virology 204:840.PubMedCrossRefGoogle Scholar
  82. Mise, K., Allison, R. F., Janda, M., and Ahlquist, P., 1993, Bromovirus movement protein genes play a crucial role in host specificity, J. Virol. 67:2815.PubMedGoogle Scholar
  83. Mor, Y., 1983, Carnation trends in Israel, Acta Hortic. 141:253.Google Scholar
  84. Morales, F., Castaño, M., Calvert, L., and Arroyave, J. A., 1992, Furcraea necrotic streak virus: An apparent new member of the dianthovirus group, J. Phytopathol. 134:247.CrossRefGoogle Scholar
  85. Morris, T. J., 1983, Virus-specific double-stranded RNA: Functional role in RNA virus infection, in: Plant Infectious Agents: Viruses, Viroids, Virusoids and Satellites (H. D. Robertson, S. H. Howell, M. Zaitlin, and M. Malmberg, eds.), pp. 80–83, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  86. Morris-Krsinich, B., Forster, R. L., and Mossop, D. W, 1983, Translation of red clover necrotic mosaic virus RNA in rabbit reticulocyte lysate: identification of the virus coat protein cistron on the larger RNA strand of the bipartite genome, Virology 124:349.PubMedCrossRefGoogle Scholar
  87. Musil, M., 1969a, Red clover necrotic mosaic virus, a new virus infecting red clover (Trifolium pratense) in Czechoslovakia, Biologica (Bratislava) 24:33.Google Scholar
  88. Musil, M., 1969b, Serological properties of certain isolates of red clover necrotic mosaic virus, Acta Virol. 13:226.PubMedGoogle Scholar
  89. Musil, M., and Gallo, J., 1982, Serotypes of red clover necrotic mosaic virus. I. Characterization of three serotypes, Acta Virol. 26:497.PubMedGoogle Scholar
  90. Musil, M., and Matisova, J., 1967, A contribution to the knowledge of virus mosaic of red clover in Slovakia, Ochrana Rostlin N.S. 3:225.Google Scholar
  91. Musil, M., Leskova, O., and Smrz, J., 1979, Susceptibility and reaction of some Leguminosae to viruses occurring in Czechoslovakia, Sbornik Vedeckych Praci. 5/6:205.Google Scholar
  92. Musil, M., Leskova, O., and Gallo, J., 1982, Serotypes of red clover necrotic mosaic virus. II. Typing of 34 isolates, Acta Virol. 26:502.PubMedGoogle Scholar
  93. Noordam, D., Thung, T. H., and Van der Want, J. P. H., 1951, Investigations on carnation mosaic. I. Tidjschr. Pl. Zeikt. 57:72.Google Scholar
  94. Okuno, T., Hiruki, C., Rao, D. V., and Figueiredo, G. C., 1983, Genetic determinants distributed in two genomic RNAs of sweet clover necrotic mosaic, red clover necrotic mosaic and clover primary leaf necrosis viruses, J. Gen. Virol. 64:1907.CrossRefGoogle Scholar
  95. Orlova, E. V., Tsuprun, V. L., Kiselev, N. A., and Spaar, D., 1980, Structure of carnation ringspot virus and its crystal monolayers, Eledron Microsc. 2:602.Google Scholar
  96. Osman, T. A. M., and Buck, K. W., 1987, Replication of red clover necrotic mosaic virus RNA in cowpea protoplasts: RNA 1 replicates independently of RNA 2, J. Gen. Virol. 68:289.CrossRefGoogle Scholar
  97. Osman, T. A. M., and Buck, K. W., 1991a, Double-stranded RNAs isolated from plant tissue infected with red clover necrotic mosaic virus correspond to genomic and subgenomic single-stranded RNAs, J. Gen. Virol. 71:945.CrossRefGoogle Scholar
  98. Osman, T. A. M., and Buck, K. W., 1991b, Detection of the movement protein of red clover necrotic mosaic virus in a cell wall fraction from infected Nicotiana clevelandii plants, J. Gen. Virol. 72:2853.PubMedCrossRefGoogle Scholar
  99. Osman, T. A. M., Dodds, S. M., and Buck, K. W., 1986, RNA 2 of red clover necrotic mosaic virus determines lesion morphology and systemic invasion of cowpea, J. Gen. Virol. 67:203.CrossRefGoogle Scholar
  100. Osman, T. A. M., Miller, S. J., Marriott, A. C., and Buck, K. W., 1991a, Nucleotide sequence of RNA-2 of a Czechoslovakian isolate of red clover necrotic mosaic virus, J. Gen. Virol. 72:213.PubMedCrossRefGoogle Scholar
  101. Osman, T. A. M., Ingles, R. J., Miller, S. J., and Buck, K. W., 1991b, A spontaneous red clover necrotic mosaic virus mutant with a truncated movement protein, J. Gen. Virol. 72:1793.PubMedCrossRefGoogle Scholar
  102. Osman, T. A. M., Hayes, R. J., and Buck, K. W., 1992, Cooperative binding of the red clover necrotic mosaic virus movement protein to single-stranded nucleic acids, J. Gen. Virol. 73:223.PubMedCrossRefGoogle Scholar
  103. Paje-Manalo, L. L., and Lommel, S. A., 1989, Independent replication of red clover necrotic mosaic virus RNA-1 in electroporated host and nonhost Nicotiana species protoplasts, Phytopathology 79:457.CrossRefGoogle Scholar
  104. Pappu, H. R., and Hiruki, C., 1989, Electrophoretic variability among dianthoviruses, Phytopathology 79:1253.CrossRefGoogle Scholar
  105. Pappu, H. R., Hiruki, C., and Inouye, N., 1988, A new serotype of sweet clover necrotic mosaic virus, Phytopathology 78:1343.CrossRefGoogle Scholar
  106. Prüfer, D., Tacke, E., Schmitz, J., Kuli, B., Kaufmann, A., and Rodhe, W., 1992, Ribosomal frameshifting in plants: A novel signal directs the-1 frameshift in the synthesis of the putative viral replicase of potato leaf roll virus, Embo J. 11:1111.PubMedGoogle Scholar
  107. Ragetli, H. W. J., and Elder, M., 1977, Characteristics of clover primary leaf necrosis virus, a new spherical isolate from Trifolium pratense, Can. J. Bot. 55:2122.CrossRefGoogle Scholar
  108. Rao, A. L. N., and Hiruki, C., 1985, Clover primary leaf necrosis virus: A strain of red clover necrotic mosaic virus, Plant Dis. 69:959.Google Scholar
  109. Rao, A. L. N., and Hiruki, C., 1987, Unilateral compatibility of genome segments from two distinct strains of red clover necrotic mosaic virus, J. Gen. Virol. 68:191.CrossRefGoogle Scholar
  110. Rao, A. L. N., Ohki, S. T., Lakshman, D. K., and Hiruki, C., 1987, Identification of a new serotype and antigenic relationships among six isolates of red clover necrotic mosaic virus: Identification of a new serotype, Phytopathology 77:995.CrossRefGoogle Scholar
  111. Richter, J., Kleinhempel, H., Gruber G., and Kegler, H., 1978, Identifizierung eines Virus von Birnen mit Steinfruichtigkeit als Nelkenringflecken-Virus (carnation ringspot virus), Arch. Phytopathol. Pflanzenschutz 14:411.CrossRefGoogle Scholar
  112. Rochon, D. M., Johnston, J. C., and Riviere, C. J., 1991, Molecular analysis of the cucumber necrosis virus genome, Can. J. Plant Pathol. 6:142.CrossRefGoogle Scholar
  113. Rüdel, M., Querfurth, G., and Paul, H. L., 1977, Natürliches Vorkommen des carnation ringspot virus in Stellaria media (L.) Cyrill. aus Weinbergen erstmals nachgewiessen, Nachrichtenblatt des Deutschen Pflanzenschutzdienstes, Stuttgart: 29:59.Google Scholar
  114. Ryabov, E. V, Generozov, E. V, Kendall, T. L., Lommel, S. A., and Zavriev, S. K., 1994, Nucleotide sequence of carnation ringspot dianthovirus RNA-1, J. Gen. Virol. 75:243.PubMedCrossRefGoogle Scholar
  115. Sparnaaij, L. D., 1983, Carnations in Europe, Acta Hortic. 141:261.Google Scholar
  116. Stone, O. M., 1968, The elimination of four viruses from carnation and sweet william by meristem-tip culture, Ann. Appl. Biol. 62:119.CrossRefGoogle Scholar
  117. Tomlinson, J. A., and Faithfull, E. M., 1984, Studies on the occurrence of tomato bushy stunt virus in English rivers, Ann. Appl. Biol. 104:485.CrossRefGoogle Scholar
  118. Tomlinson, J. A., Faithfull,. E. M., Flewett, T. H., and Beards, G., 1982, Isolation of infective tomato bushy stunt virus after passage through the human alimentary tract, Nature 300:637.PubMedCrossRefGoogle Scholar
  119. Tomlinson, J. A., Faithfull, E. M., and Seeley, N. D., 1983a, Plant viruses in rivers, Rep. Natl. Vegetable Res. Stn. 1982:86.Google Scholar
  120. Tomlinson, J. A., Faithfull, E. M., Webb, M. J. W, Fraser, R. S. S., and Seeley, N. D., 1983b, Chenopodium necrosis: A distinctive strain of tobacco necrosis virus isolated from river water, Ann. Appl. Biol. 102:135.CrossRefGoogle Scholar
  121. Tosic, M., and Tosic, D., 1984, Occurrence of tobacco mosaic virus in water of the Danube and Sava rivers, Phytopathol. Z. 110:200.CrossRefGoogle Scholar
  122. Tremaine, J. H., 1961, Removal of host antigens from plant virus preparations by ion exchange chromatography, Can. J. Bot. 39:1705.CrossRefGoogle Scholar
  123. Tremaine, J. H., and Dodds, J. A., 1985, Carnation ringspot virus, AAB Descriptions of Plant Viruses No. 308.Google Scholar
  124. Tremaine, J. H., and Ronald, W. P., 1976, Differential effects of sodium dodecyl sulphate on strains of carnation ringspot virus, J. Gen. Virol. 30:299.CrossRefGoogle Scholar
  125. Tremaine, J. H., and Ronald, W. P., 1985, The effect of pH and some selected chemicals on the temperature-reversible aggregation of carnation ringspot virus, Phytopathology 75:467.CrossRefGoogle Scholar
  126. Tremaine, J. H., Ronald, W. P., and Valcic, A., 1976, Aggregation properties of carnation ringspot virus, Phytopathology 66:34.CrossRefGoogle Scholar
  127. Tremaine, J. H., Ronald, W. P., and McGauley, E. M., 1983, Effect of sodium dextran sulfate on some isometric plant viruses, Phytopathology 73:1241.CrossRefGoogle Scholar
  128. Tremaine, J. H., Ronald, W. P., and McGauley, E. M., 1984, Temperature-reversible aggregation of two strains of carnation ringspot virus, Phytopathology 74:161.CrossRefGoogle Scholar
  129. Valenzuela, M., and Pizano, M., 1992, Distribution of carnation mottle virus and carnation ringspot virus in the Bogota Sabana, Acta Hortic. 307:221.Google Scholar
  130. Van Regenmortel, M. H. V, 1982, Serology and Immunochemistry of Plant Viruses, Academic Press, New York.Google Scholar
  131. Van Regenmortel, M. H. V, and Burckard, J., 1980, Detection of a wide spectrum of tobacco mosaic virus strains by indirect enzyme-linked immunosorbent assays, Virology 106:327.PubMedCrossRefGoogle Scholar
  132. Varmus, H., 1988, Retroviruses, Science 240:1427.PubMedCrossRefGoogle Scholar
  133. Veidt, I., Lot, H., Scheidecker, D., Guilley, H., Richards, K., and Jonard, G., 1988, Nucleotide sequence of beet western yellows virus RNA, Nucleic Acids Res. 16:9917.PubMedCrossRefGoogle Scholar
  134. Weintraub, M., Ragetli, H. W. J., and Leung, E., 1975, Abnormal nuclear structures in mesophyll cells infected with carnation ringspot virus, Phytomorphology 25:288.Google Scholar
  135. Xiong, Z., and Lommel, S. A., 1989, The complete nucleotide sequence and genome organization of red clover necrotic mosaic virus RNA-1, Virology 171:543.PubMedCrossRefGoogle Scholar
  136. Xiong, Z., and Lommel, S. A., 1991, Red clover necrotic mosaic virus infectious transcripts synthesized in vitro, Virology 182:388.PubMedCrossRefGoogle Scholar
  137. Xiong, Z., Kim, K. H., Giesman-Cookmeyer, D., and Lommel, S. A., 1993a, The roles of the RCNMV capsid and cell-to-cell movement proteins in systemic infection, Virology 193:27.CrossRefGoogle Scholar
  138. Xiong, Z., Kim, K. H., Kendall, T. L., and Lommel, S. A., 1993b, Synthesis of the putative red clover necrotic mosaic virus RNA polymerase by ribosomal frameshifting in vitro, Virology 193:213.PubMedCrossRefGoogle Scholar
  139. Yi, L., Lesemann, D.-E., Koenig, R., Rüdel, M., and Pfeilstetter, E., 1992, Isometric plant viruses found in ditches and streams in agricultural areas: recovery of previously found viruses and identification of hitherto unrecorded carmo-and tombusviruses including grapevine Algerian latent virus, J. Phytopathol. 134:121.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • R. I. Hamilton
    • 1
  • J. H. Tremaine
    • 1
  1. 1.Pacific Agriculture Research CentreAgriculture and Agri-Food CanadaVancouverCanada

Personalised recommendations