Advertisement

Molecular Basis of Transmissible Gastroenteritis Virus Epidemiology

  • Luis Enjuanes
  • Bernard A. M. van der Zeijst
Chapter
Part of the The Viruses book series (VIRS)

Abstract

A disease with the characteristics of transmissible gastroenteritis (TGE) was first reported in 1935 (Smith, 1956). The viral etiology of TGE was demonstrated 11 years later by Doyle and Hutchings (1946) in the United States. During the next 20 years TGE was reported in all other continents (Table I). Apparently, the disease occurred first in those countries that had imported North American stock and then was also introduced by European stock (Woode, 1969). There is evidence that TGE was not new to the pig, but became important to the pig industry concurrently with its intensification (Woode, 1969).

Keywords

Porcine Epidemic Diarrhea Virus Infectious Bronchitis Virus Transmissible Gastroenteritis Virus Feline Infectious Peritonitis Virus Murine Hepatitis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abou-Youssef, M. H., and Ristic, M., 1975, Protective effect of immunoglobulins in serum and milk of sows exposed to transmissible gastroenteritis virus, Can. J. Comp. Med. 39:41.PubMedGoogle Scholar
  2. Anonymous, 1989, Virus de la gastroenteritis porcina transmisible, Consejeria de Agricultura, Ganadería y Pesca de la Región de Murcia, Spain.Google Scholar
  3. Anton, I. M., González, S., Bullido, M. J., Suñé, C., Meloen, R. H., Borrás-Cuesta, F., and Enjuanes, L., 1995, Transmissible gastroenteritis coronavirus nucleoprotein specific T-helper epitope collaborates in the in vitro antibody synthesis to the three major structural viral proteins, in press.Google Scholar
  4. Asagi, M., Ogawa, T., Minetoma, T., Sato, K., and Inaba, Y., 1986, Detection of transmissible gastroenteritis virus in feces from pigs by reverse passive hemagglutination, Am. J. Vet. Res. 47:2161.PubMedGoogle Scholar
  5. Aynaud, J. M., Nguyen, T. D., Bottreau, E., Brun, A., and Vannier, P., 1985, Transmissible gastroenteritis (TGE) of swine: Survivor selection of TGE virus mutants in stomach juice of adult pigs, J. Gen. Virol. 66:1911.PubMedCrossRefGoogle Scholar
  6. Aynaud, J. M, Salmon, H., Bottreau, E., Bernard, S., and Lantier, I., 1986, Transmissible gastro-enteritis: Immunization of the pregnant sow with the 188-SG strain of TGE coronavirus (Nouzilly strain) using the intramammary route, in: Proceedings of the 9th Congress of the International Pig Veterinary Society, p 202.Google Scholar
  7. Aynaud, J. M., Bernard, S., and Shirai, J., 1988, Les ententes virales du porcelet: Données recentes sur l’immunisation de la truie contre la gastroenterite transmissible TGE en vue de la proteccion passive du porcelet, in: Proceedings of the 10th Congress of the International Pig Veterinary Society, p 32, Rio de Janeiro.Google Scholar
  8. Ballesteros, M. L., Sanchez, C. M., Méndez, A., and Enjuanes, L., 1995, Recombination between transmissible gastroenteritis coronavirus isolates which differ in tropism, in press.Google Scholar
  9. Barlough, J. E., Stoddart, C. A., Sorresso, G. P., Jacobson, R. H., and Scott, F. W., 1984, Experimental inoculation of cats with canine coronavirus and subsequent challenge with feline infectious peritonitis virus, Lab. Anim. Sci. 34:592.PubMedGoogle Scholar
  10. Barlough, J. E., Johnson-Lussenburg, C. M., Stoddart, C. A., Jacobson, R. H., and Scott, F. W., 1985, Experimental inoculation of cats with human coronavirus 229E and subsequent challenge with feline infectious peritonitis virus, Can. J. Comp. Med. 49:303.PubMedGoogle Scholar
  11. Bernard, S., Bottreau, E., Aynaud, J. M., Have, R, and Szymansky, J., 1989, Natural infection with the porcine respiratory coronavirus induces protective lactogenic immunity against transmissible gastroenteritis, Vet. Microbiol. 21:1.PubMedCrossRefGoogle Scholar
  12. Bett, A. J., Prevec, L., and Graham, F. L., 1993, Packaging capacity and stability of human Adenovirus type 5 vectors, J. Virol. 67:5911.PubMedGoogle Scholar
  13. Bohl, E. H., 1982, Vaccination against transmissible gastroenteritis (TGE) pigs, pros and cons, in: Proceedings of the 23rd Annual George A. Young Conference, p. 77, Nebraska.Google Scholar
  14. Bohl, E. H., and Saif, L. J., 1975, Passive immunity in transmissible gastroenteritis of swine: Immunoglobulin characteristics of antibodies in milk after inoculating virus by different routes, Infect. Immun. 11:23.PubMedGoogle Scholar
  15. Bohl, E. H., Gupta, R. K. P., Olquin, M. Y. F., and Saif, L., 1972, Antibody responses in serum, colostrum and milk of swine after infection or vaccination with transmissible gastroenteritis virus, Infect. Immun. 6:289.PubMedGoogle Scholar
  16. Bohl, E. H., Frederick, G. T., and Saif, L. J., 1975, Passive immunity in transmissible gastroenteritis of swine: Intramuscular injection of pregnant swine with a modified live-virus vaccine, Am. J. Vet. Res. 36:267.PubMedGoogle Scholar
  17. Boyle, J. F., Pedersen, N. C., Evermann, J. F., McKeirman, A. J., Ott, R. L., and Black, J. W., 1984, Plaque assay, polypeptide composition and immunochemistry of feline infectious peritonitis virus and feline enteric coronavirus isolates, Adv. Exp. Med. Biol. 173:133.PubMedCrossRefGoogle Scholar
  18. Bredenbeek, P. J., Frolov, I., Rice, C. M., and Schlesinger, S., 1993, Sindbis virus expression vectors: Packaging of RNA replicons by using defective helper RNAs, J. Virol. 67:6439.PubMedGoogle Scholar
  19. Bridgen, A., Duarte, M., Tobler, K., Laude, H., and Ackermann, M., 1993, Sequence determination of the nucleocapsid protein gene of the porcine epidemic diarrhoea virus confirms that this virus is a coronavirus related to human coronavirus 229E and porcine transmissible gastroenteritis virus, J. Gen. Virol. 74:1795.PubMedCrossRefGoogle Scholar
  20. Britton, P., and Page, K. W., 1990, Sequence of the S-gene from a virulent British field isolate of transmissible gastroenteritis virus, Virus Res. 18:71.PubMedCrossRefGoogle Scholar
  21. Britton, P., Cármenes, R. S., Page, K. W., and Garwes, D. J., 1988a, The integral membrane protein from a virulent isolate of transmissible gastroenteritis virus: Molecular characterization, sequence and expression in E. coli, Molec. Microbiol. 2:497.CrossRefGoogle Scholar
  22. Britton, P., Cármenes, R. S., Page, K. W., Garwes, D. J., and Parra, F., 1983b, Sequence of the nucleoprotein from a virulent British field isolate of transmissible gastroenteritis virus and its expression in Saccharomyces cerevisiae, Molec. Microbiol. 2:89.CrossRefGoogle Scholar
  23. Britton, P., López Otín, C., Martín Alonso, J. M., and Parra, F., 1989, Sequence of the coding regions from the 3.0 kb and 3.9 kb mRNA subgenomic species from a virulent isolate of transmissible gastroenteritis virus, Arch. Virol. 105:165.PubMedCrossRefGoogle Scholar
  24. Britton, P., Garwes, D. J., Page, K. W., and Stewart, F., 1990a, Molecular aspects of the relationship of the transmissible gastroenteritis virus with porcine respiratory Coronavirus, Adv. Exp. Med. Biol. 276:441.PubMedCrossRefGoogle Scholar
  25. Britton, P., Page, K. W., Mawditt, K., and Pocock, D. H., 1990b, Sequence comparison of porcine transmissible gastroenteritis virus (TGEV) with porcine respiratory coronavirus in: Proceedings of the VIIIth International Congress of Virology, p. P6., IUMS, Berlin.Google Scholar
  26. Britton, P., Mawditt, K. L., and Page, K. W., 1991, The cloning and sequencing of the virion protein genes from a British isolate of porcine respiratory coronairus: Comparison with transmissible gastroenteritis virus genes, Virus Res. 21:181.PubMedCrossRefGoogle Scholar
  27. Brown, J., and Cartwright, S. F., 1986, New porcine Coronavirus? Vet. Rec. 119:282.PubMedCrossRefGoogle Scholar
  28. Bullido, M. J., Correa, I., Jiménez, G., Suñé, C., Gebauer, F., and Enjuanes, L., 1989, Induction of transmissible gastroenteritis coronavirus-neutralizing antibodies in vitro by virus-specific T helper cell hybridomas, J. Gen. Virol. 70:659.PubMedCrossRefGoogle Scholar
  29. Callebaut, P. E., and Pensaert, M. B., 1980, Characterization and isolation of structural polypeptides in hemagglutinating encephalomyelitis virus, J. Gen. Virol. 48:193.PubMedCrossRefGoogle Scholar
  30. Callebaut, P., Debouck, P., and Pensaert, M., 1982, Enzyme-linked immunosorbent assay for the detection of the coronavirus-like agent and its antibodies in pigs with porcine epidemic diarrhea, Vet. Microbiol. 7:295.PubMedCrossRefGoogle Scholar
  31. Callebaut, P., Correa, I., Pensaert, M., Jiménez, G., and Enjuanes, L., 1988, Antigenic differentiation between transmissible gastroenteritis virus of swine and a related porcine respiratory corona-virus, J. Gen. Virol. 69:1725.PubMedCrossRefGoogle Scholar
  32. Callebaut, P. E., Pensaert, M. B., and Hooyberghs, J., 1989, A comparative inhibition ELISA for the differentiation of serum antibodies from pigs infected with transmissible gastroenteritis virus (TGEV) or with the TGEV-related porcine respiratory Coronavirus, Vet. Microbiol. 20:9.PubMedCrossRefGoogle Scholar
  33. Cavanagh, D., 1981, Structural polypeptides of coronavirus IBV, J. Gen. Virol. 53:93.PubMedCrossRefGoogle Scholar
  34. Cavanagh, D., Davis, P. J., and Mockett, A. P. A., 1988, Amino acids within hypervariable region 1 of avian coronavirus IBV (Massachusetts serotype) spike glycoprotein are associated with neutralizing epitopes, Virus Res. 11:141.PubMedCrossRefGoogle Scholar
  35. Cavanagh, D., Brian, D. A., Enjuanes, L., Holmes, K. V., Lai, M. M. C., Laude, H., Siddell, S. G., Spaan, W., Taguchi, E, and Talbot, P., 1990, Recommendations of the coronavirus study group for the nomenclature of the structural proteins, mRNAs and genes of Coronavirus, Virology 176:306.PubMedCrossRefGoogle Scholar
  36. Cavanagh, D., Brian, D. A., Enjuanes, L., Holmes, K. V., Lai, M. M. C., Laude, H., Siddell, S. G., Spaan, W., Taguchi, F., and Talbot, P., 1994, Revision of the taxonomy of the Coronavirus, Torovirus, and Arterivirus genera, Arch. Virol. 135:227.CrossRefGoogle Scholar
  37. Chan, L., Lukig, M. L., and Liew, F. Y., 1985, Helper T cells induced by an immunopurified Herpes simplex virus type I (HSV-I) 115 kilodalton glycoprotein (gB) protect mice against HSV-I infection, J. Exp. Med. 162:1304.PubMedCrossRefGoogle Scholar
  38. Chasey, D., and Cartwright, S. E, 1978, Virus-like particles associated with porcine epidemic diarrhea, Res. Vet. Sci. 25:255.PubMedGoogle Scholar
  39. Chen, K. S., 1985, Enzymatic and acidic sensitivity profiles of selected virulent and attenuated transmissible gastroenteritis viruses of swine, Am. J. Vet. Res. 46:632.PubMedGoogle Scholar
  40. Chen, K. S., and Kahn, D. E., 1985, A double-protease-resistant variant of transmissible gastroenteritis virus and its ability to induce lactogenic immunity, Am. J. Vet. Res. 46:1632.PubMedGoogle Scholar
  41. Chu, R. M., Glock, R. D., and Ross, R. F., 1982, Changes in gut associated lymphoid tissues of the small intestine of eight-week-old pigs infected with transmissible gastroenteritis virus, Am. J. Vet. Res. 43:67.PubMedGoogle Scholar
  42. Coffman, R. L., Lebman, D. A., and Shrader, B., 1989, Transforming growth factor β specifically enhances IgA production by lipopolysaccharide-stimulated murine B lymphocytes, J. Exp. Med. 170:1039.PubMedCrossRefGoogle Scholar
  43. Concellón Martinez, A., 1960, Gastroenteritis epizootica transmisible de los cerdos, Bol. Inf. Con. Gen. Col. Vet. Esp. 7:479.Google Scholar
  44. Correa, I., Jiménez, G., Suné, C., Bullido, M. J., and Enjuanes, L., 1988, Antigenic structure of E2-glycoprotein of transmissible gastroenteritis Coronavirus, Virus Res. 10:77.PubMedCrossRefGoogle Scholar
  45. Correa, L, Gebauer, F., Bullido, M. J., Suné, C., Baay, M. F. D., Zwaagstra, K. A., Posthumus, W. P. A., Lenstra, J. A., and Enjuanes, L., 1990, Localization of antigenic sites of the S glycoprotein of transmissible gastroenteritis Coronavirus, J. Gen. Virol. 71:271.PubMedCrossRefGoogle Scholar
  46. Cox, E., Pensaert, M. B., Callebaut, P., and van Deun, K., 1990b, Intestinal replication of a porcine respiratory coronavirus closely related antigenically to the enteric transmissible gastro- enteritis virus, Vet. Microbiol. 23:237.PubMedCrossRefGoogle Scholar
  47. Cox, E., Pensaert, M. B., and Callebaut, P., 1993, Intestinal protection against challenge with transmissible gastroenteritis virus of pigs immune after infection with the porcine respiratory coronavirus, Vaccine 11:267.PubMedCrossRefGoogle Scholar
  48. Cox, E., Hooyberghs, J., and Pensaert, M. B., 1990a, Sites of replication of a porcine respiratory coronavirus related to transmissible gastroenteritis virus, Res. Vet. Sci. 48:165.PubMedGoogle Scholar
  49. Cubero, M. J., Leon, L., Contreras, A., and Astorga, R., 1990, Epidemiological enquire by serological survey (ELISA) of transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus (PRCV) in the region of Murcia (Spain), in: Proceedings of the XIth Congress of the International Pig Veterinary Society, p. 264. Lausanne, Switzerland.Google Scholar
  50. Cubero, M. J., Leon, L., Contreras, A., Lanza, I., Zamora, E., and Caro, M. R., 1992, Seroepidemiological survey of porcine respiratory coronavirus (PRCV) infection in breeding herds in Southeastern Spain, J. Vet. Med. 39:1.CrossRefGoogle Scholar
  51. Cubero, M. J., Bernard, S., Leon, L., Lantier, I., and Contreras, A., 1993a, Comparative study of different immunoserological techniques for the detection of antibodies against transmissible gastroenteritis (TGE) Coronavirus, Vet. Res. 24:47.PubMedGoogle Scholar
  52. Cubero, M. J., Leon, L., Contreras, A., Astorga, R., Lanza, I., and Garcia, A., 1993b, Transmissible gastroenteritis in pigs in South East Spain—prevalence and factors associated with infection, Vet. Rec. 132:238.PubMedCrossRefGoogle Scholar
  53. Curtiss, R., Goldschmidt, R., Pastian, R., Lyons, M., Michalek, S. M., Mestecky, L., 1986, Cloning virulence determinants from S. mutans and the use of recombinant clones to construct bivalent oral vaccine strains to confer protective immunity against S. mutans-induced dental caries, in: Molecular Microbiology and Immunobiology of Streptococcus mutans (S. Hamada, ed.), pp. 173–180, Elsevier Science Publishers, New York.Google Scholar
  54. Czerkinsky, C., Prince, S. J., Michalek, S. M., Jackson, S., Moldoveanu, Z., Russell, M. W., McGhee, J. R., and Mestecky, J., 1987, IgA antibody-producing cells after antigen ingestion: Evidence for a common mucosal immune system in humans, Proc. Natl. Acad. Sci. USA 84:2449.PubMedCrossRefGoogle Scholar
  55. Czerkinsky, C., Russell, M. W., Lycke, N., Lindblad, M., and Holmgren, J., 1989, Oral administration of a streptococcal antigen coupled to cholera toxin B subunit evokes strong antibody responses in salivary glands and extramucosal tissues, Infect. Immun. 57:72.Google Scholar
  56. Dea, S., and Tijssen, P., 1988, Identification of the structural proteins of turkey enteric Coronavirus, Arch. Virol. 99:173.PubMedCrossRefGoogle Scholar
  57. De Diego, M., Laviada, M. D., Enjuanes, L., and Escribano, J. M., 1992, Epitope specificity of protective lactogenic immunity against swine transmissible gastroenteritis virus, J. Virol. 66:6502.PubMedGoogle Scholar
  58. de Groot, R. J., Maduro, J., Lenstra, J. A., Horzinek, M. C., van der Zeijst, B. A. M., and Spaan, W. J. M., 1987, cDNA cloning and sequence analysis of the gene encoding the peplomer protein of feline infectious peritonitis virus, J. Gen. Virol. 68:2639.Google Scholar
  59. de Groot, R. J., Andeweg, A. C., Horzinek, M. C., and Spaan, W. J. M., 1988, Sequence analysis of the 3′ end of the feline coronavirus FIPV79–1146 genome: Comparison with the genome of porcine coronavirus TGEV reveals large insertions, Virology 167:370.PubMedCrossRefGoogle Scholar
  60. Delmas, B., Godet, M., Gelfi, J., Raschaert, D., and Laude, H., 1990a, Enteric coronavirus TGEV: Mapping of four major antigenic determinants in the amino-terminal half of peplomer protein S, Adv. Exp. Med. Biol. 276:151.PubMedCrossRefGoogle Scholar
  61. Delmas, B., Rasschaert, D., Godet, M., Gelfi, J., and Laude, H., 1990b, Four major antigenic sites of the coronavirus transmissible gastroenteritis virus are located on the amino-terminal half of spike protein, J. Gen. Virol. 71:1313.PubMedCrossRefGoogle Scholar
  62. Delmas, B., Gelfi, J., and Laude, H., 1986, Antigenic structure of transmissible gastroenteritis virus. II. Domains in the peplomer protein, J. Gen. Virol. 67:1405.PubMedCrossRefGoogle Scholar
  63. Delmas, B., Gelfi, J., L’Haridon, R., Vogel, L. K., Norén, O., and Laude, H., 1992, Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV, Nature 357:417.PubMedCrossRefGoogle Scholar
  64. Delmas, B., Gelfi, J., Sjöström, N. O., and Laude, H., 1993, Further characterization of aminopeptidase N as a receptor for coronaviruses, J. Exp. Med. Biol. 342:293.CrossRefGoogle Scholar
  65. Descoteaux, J. P., Lussier, G., Berthiaume, L., Alain, R., Seguin, C., and Trudel, M., 1985, An enteric coronavirus of the rabbit: Detection by immunoelectron microscopy and identification of structural polypeptides, Arch. Virol. 84:241.PubMedCrossRefGoogle Scholar
  66. Doyle, L. P., and Hutchings, L. M., 1946, A transmissible gastroenteritis in pigs, J. Am. Vet. Med. Assoc. 108:257.PubMedGoogle Scholar
  67. Duarte, M., and Laude, H., 1994, The porcine epidemic diarrhoea virus genome encodes an uncleaved, large type coronavirus spike protein, J. Gen. Virol. 75:1195.PubMedCrossRefGoogle Scholar
  68. Duarte, M., Tobler, K., Bridgen, A., Rasschaert, D., Ackermann, M., and Laude, H., 1994, Sequence analysis of the porcine epidemic diarrhoea virus genome between the nucleocapsid and spike protein genes reveal a polymorphic ORF, Virology 198:466.PubMedCrossRefGoogle Scholar
  69. Duret, C., Brun, A., Guilmoto, H., and Dauvergne, M., 1988, Isolement, identification et pouvoir pathogéne chez le porc d’un coronavirus apparenté au virus de la gastro-entérite transmissible, Rec. Méd. Vét. 164:221.Google Scholar
  70. Egan, I. T., Harris, D. L., and Hill, H. T. 1982. Prevalence of swine dysentery, transmissible gastroenteritis, and Pseudorabies in Iowa, Illinois and Missouri. Proceedings of the 86th Annual Meeting of United States Animal Health Association, p. 497.Google Scholar
  71. Egberink, H. E, Ederveen, J., Callebaut, P., and Horzinek, M. C., 1988, Characterization of the structural proteins of porcine epidemic epizootic diarrhea virus, strain CV 777, Am. J. Vet. Res. 49:1320.PubMedGoogle Scholar
  72. Elson, C. O., and Ealding, W., 1984, Cholera toxin feeding did not induce oral tolerance in mice and abrogated oral tolerance to unrelated protein antigen, J. Immunol. 33:2892.Google Scholar
  73. Enjuanes, L., Gebauer, E, Correa, I., Bullido, M. J., Suné, C., Smerdou, C., Sánchez, C. M., Lenstra, J. A., Posthumus, W. P. A., and Meloen, R., 1990, Location of antigenic sites of the S-glycoprotein of transmissible gastroenteritis virus and their conservation in Coronavirus, Adv. Exp. Biol. Med. 276:159.CrossRefGoogle Scholar
  74. Evermann, J. F., Baumgartner, L., Ott, R. L., Davis, E. V., and McKeirnan, A. J., 1981, Characterization of a feline infectious peritonitis virus isolate, Vet. Pathol. 18:256.PubMedGoogle Scholar
  75. Evermann, J. E, Heeney, J. L., McKeirnan, A. J., and O’Brien, J. S., 1989, Comparative features of a coronavirus isolated from a cheetah with feline infectious peritonitis, Virus Res. 13:15.PubMedCrossRefGoogle Scholar
  76. FAO, WHO, OIE, 1984, Animal Health Yearbook 1983 (V. Kouba, ed.), International Office of Epizootics, Rome, Italy.Google Scholar
  77. Fazakerley, J. K., Parker, S. E., Bloom, E, and Buchmeier, M. J., 1992, The V5A13.1 envelope glycoprotein deletion mutant of mouse hepatitis virus type-4 is neuroattenuated by its reduced rate of spread in the central nervous system, Virology 187:178.PubMedCrossRefGoogle Scholar
  78. Fiscus, S. A., and Teramoto, Y. A., 1987a, Antigenic comparison of feline coronavirus isolates: Evidence for markedly different peplomer glycoproteins, J. Virol. 61:2607.PubMedGoogle Scholar
  79. Fiscus, S. A., and Teramoto, Y. A., 1987b, Functional differences in the peplomer glycoproteins of feline coronavirus isolates, J. Virol. 61:2655.PubMedGoogle Scholar
  80. Fitzgerald, G. R., Welter, M. W, and Welter, C. J., 1986, Improving the efficacy of oral TGE vaccination, Vet. Med. 81:184.Google Scholar
  81. Fleming, J. O., Trousdale, M. D., El-Zaatari, F. A., Stohlman, S. A., and Weiner, L. P., 1986, Pathogenicity of antigenic variants of murine coronavirus JHM selected with monoclonal antibodies, J. Virol. 58:869.PubMedGoogle Scholar
  82. Fosmire, J. A., Hwang, K., and Makino, S., 1992, Identification and characterization of a coronavirus packaging signal, J. Virol. 66:3522.PubMedGoogle Scholar
  83. Frana, M. F., Behnke, J. N., Sturman, L. S., and Holmes, K. V., 1985, Proteolytic cleavage of the E2 polyprotein of murine Coronavirus: Host-dependent differences in proteolytic cleavage and cell fusion, J. Virol. 56:912.PubMedGoogle Scholar
  84. Furuuchi, S., Shimizu, Y., and Kumagai, T, 1975, Comparison of properties between virulent and attenuated strains of transmissible gastroenteritis virus, Natl. Inst. Anim. Health Q. 15:159.Google Scholar
  85. Furuuchi, S., Shimizu, Y., and Kumagai, T., 1976, Vaccination of pigs with an attenuated strain of transmissible gastroenteritis virus, Am. J. Vet. Res. 37:1401.PubMedGoogle Scholar
  86. Furuuchi, S., Shimizu, M., and Shimizu, Y., 1978, Field trials on transmissible gastroenteritis live virus vaccine in newborn piglets. Natl. Inst. Anim. Health Q. 18:135.Google Scholar
  87. Furuuchi, S., Shimizu, Y., and Kumagai, T., 1979, Multiplication of low and high cell culture passaged strains of transmissible gastroenteritis virus in organs of newborn piglets, Vet. Microbiol. 3:169.CrossRefGoogle Scholar
  88. Garwes, D. J., 1982, coronavirus in animals, in: Virus Infections of the Gastrointestinal Tract (D. A. J. Tyrell and A. Z. Kapikian, eds.), p. 319, Marcel Dekker, New York.Google Scholar
  89. Garwes, D. J., and Pocock, D. H., 1975, The polypeptide structure of transmissible gastroenteritis virus, J. Gen. Virol. 29:25.PubMedCrossRefGoogle Scholar
  90. Garwes, D. J., and Reynolds, D. J., 1981, The polypeptide structure of canine coronavirus and its relationship to porcine transmissible gastroenteritis virus, J. Gen. Virol. 52:153.PubMedCrossRefGoogle Scholar
  91. Gebauer, F., Posthumus, W. P. A., Correa, L, Suné, C., Smerdou, C., Sanchez, C. M., Lenstra, J. A., Meloen, R. H., and Enjuanes, L., 1991, Residues involved in the antigenic sites of transmissible gastroenteritis coronavirus S glycoprotein, Virology 183:225.PubMedCrossRefGoogle Scholar
  92. Godet, M., L’Haridon, R., Vautherot, J. F., and Laude, H., 1992, TGEV coronavirus ORF4 encodes a membrane protein that is incorporated into virions, Virology 188:666.PubMedCrossRefGoogle Scholar
  93. Gough, P. M., Ellis, C. H., Frank, C. J., and Johnson, C. J., 1983a, A viral subunit immunogen for porcine transmissible gastroenteritis, Antiviral Res. 3:211.PubMedCrossRefGoogle Scholar
  94. Gough, P. M., Frank, C. J., Moore, D. G., Sagona, M. A., and Johnson, C. J., 1983b, Lactogenic immunity to transmissible gastroenteritis virus induced by a subunit immunogen, Vaccine 1:37.PubMedCrossRefGoogle Scholar
  95. Graham, F. L., and Prevec, L., 1992, Adenovirus-based expression vectors and recombinant vaccines, in: Vaccines: New Approaches to Immunological Problems (R. W. Ellis, ed.), p. 363, Butter-worth-Heinemann, Stoneham, MA.Google Scholar
  96. Haelterman, E. O., 1965, Lactogenic immunity to transmissible gastroenteritis of swine, J. Am. Vet. Med. Assoc. 147:1661.Google Scholar
  97. Halbur, P. G., Paul, P. S., Vaughn, E. M., and Andrews, J. J., 1992, Porcine respiratory Coronavirus, Am. Assoc. Swine Prod. March/April, 21.Google Scholar
  98. Halbur, P. G., Paul, P. S., Vaughn, E. M., and Andrews, J. J., 1993, Experimental reproduction of pneumonia in gnotobiotic pigs with porcine respiratory coronavirus isolate AR310, J. Vet. Diag. Invest. 5:184.CrossRefGoogle Scholar
  99. Harada, K., Furuuchi, S., Kumagai, T., and Sasahara, J., 1969, Pathogenicity, immunogenicity and distribution of transmissible gastroenteritis virus in pigs, Natl. Inst. Anim. Health Quart. 9:185.Google Scholar
  100. Hariharan, K., Srikumara, S., Moxley, R. A., Osorio, F. A., and Arevalo-Morales, A., 1989, Induction of neutralizing antibodies to transmissible gastroenteritis virus by anti-idiotypic antibodies, Viral Immunol. 2:133.PubMedCrossRefGoogle Scholar
  101. Harriman, G. R., Kunimoto, D. Y., Elliot, J. F., Paetkau, V, and Strober, W., 1988, The role of IL-5 in IgA B cell differentiation, J. Immunol. 140:3033.PubMedGoogle Scholar
  102. Have, P., 1991, Infection with a new porcine respiratory coronavirus in Denmark. Serologic differentiation from transmissible gastroenteritis virus using monoclonal antibodies, Adv. Exp. Med. Biol. 276:435.CrossRefGoogle Scholar
  103. Henningsen, A. D., Mousing, J., and Aalund, O., 1988, Porcine coronavirus (PCV) in Denmark: An epidemiological study based on questionaire data from screening districts, Dansk Vet. Tidsskrift 71:1168.Google Scholar
  104. Hess, R. G., and Bachmann, P. A., 1976, In vitro differentiation and pH sensitivity of field and cell culture-attenuated strains of transmissible gastroenteritis virus, Infect. Immun. 13:1642.PubMedGoogle Scholar
  105. Hill, H. T., 1989, Preventing epizootic TGE from becoming enzootic TGE, Vet. Med. April:432.Google Scholar
  106. Hoefling, D., 1989, Tracking the culprits behind diarrhea in neonatal pigs, Vet. Med. April:426.Google Scholar
  107. Hofmann, M., and Wyler, R., 1990, Enzyme-linked immunosorbent assay for the detection of porcine epidemic diarrhea coronavirus antibodies in swine sera, Vet. Microbiol. 21:263.PubMedCrossRefGoogle Scholar
  108. Hogue, B. G., and Brian, D. A., 1986, Structural proteins of human respiratory coronavirus OC43, Virus Res. 5:131.PubMedCrossRefGoogle Scholar
  109. Hogue, B. G., Kienzle, T. E., and Brian, D. A., 1989, Synthesis and processing of the bovine enteric coronavirus haemagglutinin protein, J. Gen. Virol. 70:345.PubMedCrossRefGoogle Scholar
  110. Hohdatsu, T., Eiguchi, Y., Tsuchimoto, M., Ide, S., Yamagishi, H., and Matumoto, M., 1987, Antigenic variation of porcine transmissible gastroenteritis virus detected by monoclonal antibodies, Vet. Microbiol. 14:115.PubMedCrossRefGoogle Scholar
  111. Holmes, K. V., Doller, E. W., and Behnke, J. N., 1981, Analysis of the functions of coronavirus glycoproteins by differential inhibition of synthesis with tunicamycin, Adv. Exp. Med. Biol. 142:133.PubMedCrossRefGoogle Scholar
  112. Holmes, V, Williams, R. K., Stephensen, C. B., Compton, R., Cardellichio, C. B., Hay, C. M., Knobler, R. L., Weismiller, D. G., and J. F. Boyle, 1989, coronavirus receptors, in: Cell Biology of Virus Entry, Replication, and Pathogenesis (R. W. Compans, A. Helenius and M. B. A. Oldstone, eds.), p. 85, Alan R. Liss, New York.Google Scholar
  113. Holmgren, J., Lycke, N., and Czerkinsky, C., 1993, Cholera toxin and cholera B subunit as oral-mucosal adjuvant and antigen vector systems, Vaccine 11:1179.PubMedCrossRefGoogle Scholar
  114. Hooyberghs, J., Pensaert, M. B., and Callebaut, P., 1988, Transmissible gastroenteritis: Outbreaks in swine herds previously infected with a TGEV-like porcine respiratory coronavirus, Proceedings of the 10th International Pig Veterinary Society Congress, 1988, Rio Janeiro, p. 200.Google Scholar
  115. Horsburgh, B. C., Brierley, I., and Brown, T. D. K., 1992, Analysis of a 9.6 kb sequence from the 3’ end of canine coronavirus genomic RNA, J. Gen. Virol. 73:2849.PubMedCrossRefGoogle Scholar
  116. Horzinek, M. C., Lutz, H., and Pedersen, N. C., 1982, Antigenic relationship among homologous structural polypeptides of porcine, feline, and canine coronaviruses, Infect. Immun. 37:1148.PubMedGoogle Scholar
  117. Hu, S., Bruszewski, J., Boone, T., and Souza, L., 1984, Cloning and expression of the surface glycoprotein of porcine transmissible gastroenteritis virus, in: Modern Approaches to Vaccines (R. Chanock and R. Lerner, eds.), p. 219, CSHL, New York.Google Scholar
  118. Hu, S., Bruszewski, J., Smallig, R., and Browne, J. K., 1987, Studies of TGEV spike protein GP195 expressed in E. coli and by a TGE-vaccinia virus recombinant, in: Immunobiology of Proteins and Peptides. II. Viral and Bacterial Antigens (M. Zouhair Attasi and H. L. Bachrach, eds.), p. 63, Plenum Press, New York.Google Scholar
  119. Jabrane, A., and Elazhary, Y., 1993, Pathogenicity of porcine respiratory coronavirus isolated in Quebec, Can. Vet. J. 15:16.Google Scholar
  120. Jacobs, L., van der Zeijst, B. A. M., and Horzinek, M., 1986, Characterization and translation of transmissible gastroenteritis virus mRNAs, J. Virol. 57:1010.PubMedGoogle Scholar
  121. Jacobs, L., de Groot, R., van der Zeijst, B. A. M., Horzinek, M. C., and Spaan, W., 1987, The nucleotide sequence of the peplomer gene of porcine transmissible gastroenteritis virus (TGEV): Comparison with the sequence of the peplomer protein of feline infectious peritonitis virus (FIPV), Virus Res. 8:363.PubMedCrossRefGoogle Scholar
  122. Jestin, A., Leforban, Y., and Vannier, P., 1987a, Porcine coronavirus, Rec. Med. Vet. 163:583.Google Scholar
  123. Jestin, A., LeForban, Y., Vannier, P., Madec, E, and Gourreau, J. M., 1987b, Un nouveau coronavirus porcin. Etudes sero-épidémilogiques retrospectives dans les élévages de Bretagne, Rec. Méd. Vét. 163:567.Google Scholar
  124. Jiménez, G., Castro, J. M., Del Pozo, M., Correa, L, De la Torre, J., and Enjuanes, L., 1986a, Identification of a coronavirus inducing porcine gastroenteritis in Spain, Proceedings of the 9th International Pig Veterinary Society, p. 186, Barcelona, Spain.Google Scholar
  125. Jiménez, G., Correa, I., Melgosa, M. P., Bullido, M. J., and Enjuanes, L., 1986b, Critical epitopes in transmissible gastroenteritis virus neutralization, J. Virol. 60:131.PubMedGoogle Scholar
  126. Kapke, P. A., and Brian, D. A., 1986, Sequence analysis of the porcine transmissible gastroenteritis coronavirus nucleocapsid protein gene, Virology 151:41.PubMedCrossRefGoogle Scholar
  127. Kapke, P. A., Tung, E Y. C., Brian, D. A., Woods, R. D., and Wesley, R., 1987, Nucleotide sequence of the porcine transmissible gastroenteritis coronavirus matrix protein, Adv. Exp. Med. Biol. 218:117.PubMedCrossRefGoogle Scholar
  128. Kemeny, L. J., 1978, Isolation of transmissible gastroenteritis virus from pharyngeal swabs obtained from sows at slaughter, Am. J. Vet. Res. 39:703.PubMedGoogle Scholar
  129. Kemeny, L. J., and Woods, R. D., 1977, Quantitative transmissible gastroenteritis virus shedding patterns in lactating sows, Am. J. Vet. Res. 38:307.PubMedGoogle Scholar
  130. Kemeny, L. J., Wiltsey, V L., and Riley, J. L., 1975, Upper respiratory infection of lactating sows with transmissible gastroenteritis virus following contac exposure to infected piglets, Cornell Vet. 65:352.PubMedGoogle Scholar
  131. Kemp, M. C., Hierholzer, J. C., Harrison, A., and Burks, J. S., 1984, Characterization of viral proteins synthesized in 229-E infected cells and effect (s) of inhibition of glycosylation and glycoprotein transport, in: Molecular Biology and Pathogenesis of coronavirus es, Vol. 173 (P. J. M. Rottier, B. A. M. van der Zeijst, W. J. M. Spaan, and M. C. Horzinek, eds.), p. 65, Plenum Press, New York.CrossRefGoogle Scholar
  132. Kenny, A. J., Stephenson, S. L., Turner, A. J., 1987, Cell surface peptidases, in: Mammalian ectoenzymes (Kenny, A. J., Turner, A. J., eds.), p 169, Elsevier, New York.Google Scholar
  133. King, B., and Brian, D. A., 1982, Bovine coronavirus structural proteins, J. Virol. 42:700.PubMedGoogle Scholar
  134. Klavinskis, L. S., Lindsay, Whitton J., and Oldstone, M. B. A., 1989, Moleculary engineered vaccine which expresses an immunodominant T-cell epitope induces cytotoxic T lymphocytes that confer protection from lethal virus infection, J. Virol. 63:4311.PubMedGoogle Scholar
  135. Kleibocker, S. B., Seal, B. S., and Mengeling, W. L., 1993, Genomic cloning and restriction site mapping of a porcine adenovirus isolate: Demonstration of genomic stablility in porcine adenovirus, Arch. Virol. 133:357.CrossRefGoogle Scholar
  136. Knuchel, M., Ackermann, M., Muller, H., and Kihm, H., 1992, An ELISA for detection of antibodies against porcine epidemic diarrhoea virus (PEDV) based on the specific solubility of the viral surface glycoprotein, Vet. Microbiol. 32:117.PubMedCrossRefGoogle Scholar
  137. Koetzner, C. A., Parker, M. M., Ricard, C. S., Sturman, L. S., and Masters, P. S., 1992, Repair and mutagenesis of the genome of a deletion mutant of the coronavirus mouse hepatitis virus by targeted RNA recombination, J. Virol. 66:1841.PubMedGoogle Scholar
  138. Kusters, J. G., Niesters, H. G. M., Lenstra, S. A., Horzinek, M. C., and van der Zeijst, B. A. M., 1989, Phylogeny of antigenic variants of avian coronavirus IBV, Virology 169:217.PubMedCrossRefGoogle Scholar
  139. Lanza, I., Brown, I., and Paton, D. J., 1992, Pathogenicity of concurrent infection in pigs with porcine respiratory coronavirus and swine influenza virus, Res. Vet. Sci. 53:309.PubMedCrossRefGoogle Scholar
  140. Lanza, I., Rubio, P., Enjuanes, L., Callebaut, P., and Carmenes, P., 1990, Improvement of an ELISA for the detection of IgG anti-TGEV/PRCV in swine area, Proceedings of the 11th International Pig Veterinary Society, p 213, Lausanne, Switzerland.Google Scholar
  141. Lanza, I., Rubio, P., Fernández, M., Munoz, M., and Cármenes, P., 1993a, Seroprevalence of porcine respiratory coronavirus infection in Spanish breeding sows, Prev. Vet. Med. 17:263.CrossRefGoogle Scholar
  142. Lanza, I., Rubio, P., Munoz, M., and Cármenes, P., 1993b, Comparison of a monoclonal antibody capture ELISA (MACELISA) to indirect ELISA and virus neutralization test for the serodiagnosis of transmissible gastroenteritis virus, J. Vet. Diagn. Invest. 5:21.PubMedCrossRefGoogle Scholar
  143. Laude, H., 1981, In vitro properties of low- and high-passaged strains of transmissible gastroenteritis coronavirus of swine, Am. J. Vet. Res. 42:447.PubMedGoogle Scholar
  144. Laude, H., Charley, B., and Gelfi, J., 1984, Replication of transmissible gastroenteritis coronavirus (TGEV) in swine alveolar macrophages, J. Gen. Virol. 65:327.PubMedCrossRefGoogle Scholar
  145. Laude, H., Chapsal, J. M., Gelfi, J., Labiau, S., and Grosclaude, J., 1986, Antigenic structure of transmissible gastroenteritis virus. I. Properties of monoclonal antibodies directed against virion proteins, J. Gen. Virol. 67:119.PubMedCrossRefGoogle Scholar
  146. Laude, H., Rasschaert, D., and Huet, J. C., 1987, Sequence and N-terminal processing of the transmembrane protein E1 of the coronavirus transmissible gastroenteritis virus, J. Gen. Virol. 68:1687.PubMedCrossRefGoogle Scholar
  147. Laude, H., Vanreeth, K., and Pensaert, M., 1993, Porcine respiratory coronavirus—Molecular features and virus host interactions, Vet. Res. 24:125.PubMedGoogle Scholar
  148. Laviada, M. D., Marcotegui, M. A., and Escribano, J. M., 1988, Diagnóstico e identification de un brote de gastroenteritis porcina transmisible en Espana, Med. Vet. 5:63.Google Scholar
  149. Lebman, D. A., and Coffman, R. L., 1988, The effects of IL-4 and IL-5 on the IgA response by murine Peyer’s patch B cell subpopulations, J. Immunol. 141:2050.PubMedGoogle Scholar
  150. Liljeström, P., and Garoff, H., 1991, A new generation of animal cell expression vectors based on the Semliki forest virus replicon, Biotechnology 9:1356.PubMedCrossRefGoogle Scholar
  151. Look, A. T., Ashmun, R. A., Shapiro, L. H., and Peiper, S. C., 1989, Human myeloid plasma membrane glycoprotein CD13 (gpl50) is identical to aminopeptidase, N. J. Clin. Invest. 83:1299.CrossRefGoogle Scholar
  152. Lubeck, M. D., Davis, A. R., Chengalvala, M., Naatuk, R. J., Morin, J. E., Molnar-Kimber, K., Moson, B. B., Bhat, B. M., Mizutani, S., Hung, P. P., and Purcell, R. H., 1989, Immunogenicity and efficacy testing in chimpanzees of an oral hepatitis B vaccine based on live recombinant adenovirus, Proc. Natl. Acad. Sci. USA 86:6763.PubMedCrossRefGoogle Scholar
  153. Luytjes, W., Sturman, L. S., Bredenbeek, P. J., Charité, J., van der Zeijst, B. A. M., Horzinek, M. C., and Spaan, W. J. M., 1987, Primary structure of the E2 glycoprotein of coronavirus MHV-A59 and identification of the trypsin cleavage site, Virology 161:479.PubMedCrossRefGoogle Scholar
  154. Lycke, N., and Holmgren, J., 1986, Strong adjuvant properties of cholera toxin on gut mucosal immune responses to orally presented antigens, Immunology 59:301.PubMedGoogle Scholar
  155. Makino, S., and Joo, M., 1993, Effect of intergenic consensus sequence flanking sequences on coronavirus transcription, J. Virol. 67:3304.PubMedGoogle Scholar
  156. Makino, S., Shieh, C.-K., Soe, L. H., Baker, S. C., and Lai, M. C., 1988, Primary structure and translation of a defective interfering RNA of murine coronavirus, Virology 166:550.PubMedCrossRefGoogle Scholar
  157. Makino, S., Yokomori, K., and Lai, M. M. C., 1990, Analysis of efficiently packaged defective interfering RNAs of murine coronavirus-localization of a possible RNA-packaging signal, J. Virol. 64:6045.PubMedGoogle Scholar
  158. Martin-Alonso, J. M., Balbin, M., Garwes, D. J., Enjuanes, L., Gascon, S., and Parra, E, 1992, Antigenic structure of transmissible gastroenteritis virus nucleoprotein, Virology 188:168.PubMedCrossRefGoogle Scholar
  159. Masters, P. S., 1992, Repair and mutagenesis of the genome of a deletion mutant of the coronavirus mouse hepatitis virus by targeted RNA recombination, J. Virol. 66:1841.PubMedGoogle Scholar
  160. Masters, P. S., Koetzner, C. A., Kerr, C. A., and Heo, Y., 1994, Optimization of targeted RNA recombination and mapping of a novel nucleocapsid gene mutation in the coronavirus mouse hepatitis virus, J. Virol. 68:328.PubMedGoogle Scholar
  161. Méndez, A., Smerdou, C., and Enjuanes, L., 1995, Primary structure of a defective interfering RNA of transmissible gastroenteritis coronavirus (in preparation).Google Scholar
  162. Mengeling, W. L., Boothe, A. D., and Ritchie, A. E., 1972, Characteristics of a coronavirus (strain 67N) of pigs, Am. J. Vet. Res. 33:297.PubMedGoogle Scholar
  163. Mestecky, J., 1987, The common mucosal immune system and current strategies for induction of immune responses in external secretions, J. Clin. Immunol. 7:265.PubMedCrossRefGoogle Scholar
  164. Mestecky, J., and McGhee, J. R., 1987, Immunoglobulin A (IgA): Molecular and cellular interactions involved in IgA biosynthesis and immune response, Adv. Immunol. 40:153.PubMedCrossRefGoogle Scholar
  165. Mittal, S. K., McDermott, M. R., Johnson, D. C., Prevec, L., and Graham, F. L., 1993, Monitoring foreign gene expression by a human adenovirus based vector using the firefly luciferase as a reporter gene, Virus Res. 28:67.PubMedCrossRefGoogle Scholar
  166. Moxley, R. A., and Olson, L. D., 1989, Clinical evaluation of transmissible gastroenteritis virus vaccines and vaccination procedures for inducing lactogenic immunity in sows, Am. J. Vet. Res. 50:111.PubMedGoogle Scholar
  167. Moxley, R. A., Olson, L. D., and Solorzano, R. R, 1989, Relationship among transmissible gastroenteritis virus antibody titers in serum, colostrum, and milk from vaccinated sows, and protection in their suckling pigs, Am. J. Vet. Res. 50:119.PubMedGoogle Scholar
  168. National Animal Health Monitoring Systems (NAMHS), 1992. Advisory Group Report. United States Department of Agriculture. Veterinary Services, Fort Collins, ColoradoGoogle Scholar
  169. Nedrud, J. G., Liang, X., Hague, N., and Lamm, M. E., 1987, Combined oral/nasal immunization protects mice from Sendai virus infection, J. Immunol. 139:3484.PubMedGoogle Scholar
  170. Nguyen, T. D., Bernard, S., Botreau, E., Lantier, I., and Aynaud, J. M., 1987, Etude comparée de trois souche du coronavirus de la gastroentérite transmissible: Conditiona de la réplication virale et de 1s synthésis des antigánes estructuraux, Ann. Inst. Pasteur/Virol. 138:315.CrossRefGoogle Scholar
  171. Niesters, H. G. M., Lenstra, J. A., Spaan, W. J. M., Zijderveld, A. J., Bleumink-Pluym, N. M. C., Hong, F., Van Scharrenburg, G. J. M., Horzinek, M. C., and van der Zeijst, B. A. M., 1986, The peplomer protein sequences of the M41 strain of coronavirus IBV and its comparison with Beaudette strains, Virus Res. 5:253.PubMedCrossRefGoogle Scholar
  172. Norén, O., Sjöström, H., Danielsen, E. M., Cowell, G. M., and Skovbjerg, H. (eds.), 1986, The Enzymes of the Enterocyte Plasma Membrane, Elsevier/North-Holland Biomedical Press, Amsterdam.Google Scholar
  173. O’Toole, D., Brown, I., Bridges, A., and Cartwright, S. F., 1989, Pathogenicity of experimental infection with “pneumotropic” procine Coronavirus, Res. Vet. Sci. 47:23.PubMedGoogle Scholar
  174. Parker, M. D., Cox, G. J., Deregt, D., Fitzpatrick, D. C., and Babiuk, L. A., 1989, Cloning and in vitro expression of the gene for the E3 haemagglutining glycoprotein of bovine Coronavirus, J. Gen. Virol. 70:155.PubMedCrossRefGoogle Scholar
  175. Paton, D. J., and Brown, I. H., 1990, Sows infected in pregnancy with porcine respiratory coronavirus show no evidence of protecting their suckling piplets against transmissible gastroenteritis, Vet. Res. Commun. 14:329.PubMedGoogle Scholar
  176. Pedersen, N. C., Ward, J., and Mengeling, W. L., 1978, Antigenic relationship of the feline infectious peritonitis virus to coronaviruses of other species, Arch. Virol. 58:45.PubMedCrossRefGoogle Scholar
  177. Pensaert, M. B., and Debouck, P., 1978, A new coronavirus-like particle associated with diarrhea in swine, Arch. Virol. 58:243.PubMedCrossRefGoogle Scholar
  178. Pensaert, M., Callebaut, P., and Vergote, J., 1986, Isolation of a porcine respiratory, non-enteric coronavirus related to transmissible gastroenteritis, Vet. Quart. 8:257.CrossRefGoogle Scholar
  179. Pensaert, M., Callebaut, P., and Hooyberghs, J., 1987, Transmissible gastroenteritis virus in swine: Old and news, in: Proceedings of the 9th International Pig Veterinary Society Congress, p 40, Barcelona, Spain.Google Scholar
  180. Pensaert, M., Cox, E., Deun, V, and Callebaut, P., 1993, A seroepizootiological study of the porcine respiratory coronavirus in the Belgian swine population, Vet. Quart. 65:16.CrossRefGoogle Scholar
  181. Pierce, N. F., 1978, The role of antigen form and function in the primary and secondary intestinal immune response to cholera toxin and toxoid in rats, J. Exp. Med. 148:195.PubMedCrossRefGoogle Scholar
  182. Plana, J., Vayreda, M., and Marull, L., 1982, Diagnosis of a deadly outbreak of transmissible gastroenteritis in Spain, Proceedings of the 7th International Symposium of World Association of Veterinary Microbiologists, Immunologists and Specialists in Infectious Diseases (WAVMI), p162. Barcelona, Spain.Google Scholar
  183. Pocock, D. H., and Garwes, D. J., 1977, The polypeptides of haemagglutinating encephalomyelitis virus and isolated subviral particles, J. Gen. Virol. 37:487.CrossRefGoogle Scholar
  184. Popischil, A., Cox, E., and Pensaert, M., 1990, Localization of porcine respiratory coronavirus in the small intestine of experimental infected piglets, Proceedings of the 11th International Pig Veterinary Society, p219. Lausanne, Switzerland.Google Scholar
  185. Porter, P., and Allen, W. D., 1972, Classes of immunoglobulins related to immunity in the pig: A review, J. Am. Vet. Med. Assoc. 160:511.PubMedGoogle Scholar
  186. Posthumus, W., Meloen, R. H., Enjuanes, L., Correa, I., Van Nieuwstadt, A. P., Koch, G., de Groot, R. J., Kusters, J. G., Luytjes, W., Spaan, W. J., van der Zeijst, B. A. M., and Lenstra, J. A., 1990a, Linear neutralizing epitopes on the peplomer protein of coronaviruses, Adv. Exp. Med. Biol. 276:181.PubMedCrossRefGoogle Scholar
  187. Posthumus, W. P. A., Lenstra, J. A., Schaaper, W. M. M., van Nieuwstadt, A. P., Enjuanes, L., and Meloen, R. H., 1990b, Analysis and simulation of a neutralizing epitope of transmissible gastroenteritis virus, J. Virol. 64:3304.PubMedGoogle Scholar
  188. Prevec, L., Schneider, M., Rosenthal, K. L., Belbeck, L. W., Derbyshire, J. B., and Graham, F. L., 1989, Use of human adenovirus-based vectors for antigen expression in animals, J. Gen. Virol. 70:429.PubMedCrossRefGoogle Scholar
  189. Pritchard, G. C., 1987, Transmissible gastroenteritis in endemically infected breeding herds of pigs in East Anglia, 1781–85, Vet. Rec. 120:226.PubMedCrossRefGoogle Scholar
  190. Pritchard, G. C., and Cartwright, S. F., 1982, TGE of pigs, Vet. Rec. 111:512.CrossRefGoogle Scholar
  191. Pulford, D. J., Britton, P., Page, K. W., and Garwes, D. J., 1990, Expression of transmissible gastroenteritis virus structural genes by virus vectors, Adv. Exp. Med. Biol. 276:223.PubMedCrossRefGoogle Scholar
  192. Raabe, T., and Siddell, S. G., 1989, Nucleotide sequence of the gene encoding the membrane protein of human coronavirus 229E, Arch. Virol. 107:323.PubMedCrossRefGoogle Scholar
  193. Rasschaert, D., and Laude, L., 1987, The predicted primary structure of the peplomer protein E2 of the porcine coronavirus transmissible gastroenteritis virus, J. Gen. Virol. 68:1883.PubMedCrossRefGoogle Scholar
  194. Rasschaert, D., Gelfi, J., and Laude, H., 1987, Enteric coronavirus TGEV: Partial sequence of the genomic RNA, its organization and expression, Biochemie 69:591.CrossRefGoogle Scholar
  195. Rasschaert, D., Duarte, M., and Laude, H., 1990, Porcine respiratory coronavirus differs from transmissible gastroenteritis virus by a few genomic deletions, J. Gen. Virol. 71:2599.PubMedCrossRefGoogle Scholar
  196. Reddehase, M. J., Mutter, W., Münch, K., Burning, H. J., and Koszinowski, U. H., 1987, CD8 positive T lymphocytes specific for murine cytomegalovirus immediate-early antigens mediate protective immunity, J. Virol. 61:3102.PubMedGoogle Scholar
  197. Redman, D. R., Bohl, E. H., and Cross, R. F., 1978, Intrafetal inoculation of swine with transmissible gastroenteritis virus, Am. J. Vet. Res. 39:907.PubMedGoogle Scholar
  198. Register, K. B., and Wesley, R. D., 1994, Molecular characterization of attenuated vaccine strains of transmissible gastroenteritis virus, J. Vet. Diagn. Invest. 6:16.PubMedCrossRefGoogle Scholar
  199. Resta, S., Luby, J. P., Rosenfeld, C. R., and Siegel, J. D., 1985, Isolation and propagation of a human enteric coronavirus, Science 229:978.PubMedCrossRefGoogle Scholar
  200. Reynolds, D. J., Garwes, D. J., and Lucey, S., 1980, Differenciation of canine coronavirus and porcine transmissible gastroenteritis virus by neutralization with canine, porcine and feline sera, Vet. Microbiol. 5:283.CrossRefGoogle Scholar
  201. Rubio, P., Alvarez, M., and Carmenes, P., 1987, Estudio epizootiológico de la gastroenteritis transmisible en Castilla y Leon, in: 8th Symposium Asociación Nacional de Porcinocultura Científica), p40. Barcelona, Spain.Google Scholar
  202. Saif, L. J., and Bohl, E. H., 1983, Passive immunity to transmissible gastroenteritis virus: Intramammary viral inoculation of sows, Ann. NY Acad. Sci. 409:708.PubMedCrossRefGoogle Scholar
  203. Saif, L. J., and Wesley, R. D., 1992, Transmissible gastroenteritis, in: Diseases of Swine (A. D. Leman, B. Straw, W. L. Mengeling, S. D’ Allaire, and D. J. Taylor, eds.), p. 362, Iowa State University Press, Ames.Google Scholar
  204. Sánchez, C. M., Jiménez, G., Laviada, M. D., Correa, I., Suñé, C., Bullido, M. J., Gebauer, F., Smerdou, C., Callebaut, P., Escribano, J. M., and Enjuanes, L., 1990, Antigenic homology among coronaviruses related to transmissible gastroenteritis virus, Virology 174:410.PubMedCrossRefGoogle Scholar
  205. Sánchez, C. M., Gebauer, F., Suñé, C., Méndez, A., Dopazo, J., and Enjuanes, L., 1992, Genetic evolution and tropism of transmissible gastroenteritis coronaviruses, Virology 190:92.PubMedCrossRefGoogle Scholar
  206. Sasahara, J., Harada, K., Hayashi, S., and Watanabe, M., 1958, Studies on transmissible gastroenteritis pigs in Japan, Jap. J. Vet. Sci. 20:1.CrossRefGoogle Scholar
  207. Schlesinger, S., 1993, Alphaviruses-vectors for the expression of heterologous genes, Trends Biotechnol. 11:18.PubMedCrossRefGoogle Scholar
  208. Schmidt, O. W., and Kenny, G. E., 1982, Polypeptides and functions of antigens from human coronaviruses 229 E and OC43, Infect Immun. 35:515.PubMedGoogle Scholar
  209. Schneider, M., Graham, F. L., and Prevec, L., 1989, Expression of the glycoprotein of vesicular stomatitis virus by infectious adenovirus vectors, J. Gen. Virol. 70:417.PubMedCrossRefGoogle Scholar
  210. Schreiber, S., Kamahora, T., and Lai, M. M. C., 1989, Sequence analysis of the nucleocapsid protein gene of human coronavirus 229E, Virology 169:142.PubMedCrossRefGoogle Scholar
  211. Scott, F. W., 1987, Immunization against feline coronaviruses, Adv. Exp. Med. Biol. 218:569.PubMedCrossRefGoogle Scholar
  212. Seshidhar-Reddy, P., Nagy, E., and Derbyshire, J. B., 1993, Restriction endonuclease analysis and molecular cloning of porcine Adenovirus type3, Intervirology 36:161.Google Scholar
  213. Sethna, P. B., Hung, S.-L., and Brian, D.A. 1989, coronavirus subgenomic minus-strand RNAs and the potential for mRNA replicons, Proc. Natl. Acad. Sci. USA 86:5626.PubMedCrossRefGoogle Scholar
  214. Shockley, L. J., Kapke, P. A., Lapps, W., Brian, D. A., Potgieters, L. N. D., and Woods, R., 1987, Diagnosis of porcine and bovine enteric coronavirus infections using cloned DNA prober, J. Clin. Microbiol. 25:1591.PubMedGoogle Scholar
  215. Siddell, S. G., Wege, H., and Ter Meulen, V., 1982, The structure and replication of coronaviruses, Curr. Top. Microbiol. Immunol. 99:131.PubMedCrossRefGoogle Scholar
  216. Small, J. D., and Woods, R. D., 1987, Relatedness of rabbit coronavirus to other coronaviruses, Adv. Exp. Med. Biol. 218:521.PubMedCrossRefGoogle Scholar
  217. Smerdou, C., Anton, I. M., Plana, J., Curtiss, R., and Enjuanes, L., 1995, Expression of a continuous epitope from transmissible gastroenteritis coronavirus S protein fused to E. coli heat-labile toxin B subunit in attenuated Salmonella for oral immunization (in preparation).Google Scholar
  218. Smith, H. C., 1956, Advances made in swine practice, Vet. Med. 51:425.Google Scholar
  219. Söderberg, C., Giugni, T. D., Zaia, J. A., Larsson, S., Wahlberg, J. M., and Möller, E., 1993, CD13 (human aminopeptidase N) mediates human cytomegalovirus infection, J. Virol. 67:6576.PubMedGoogle Scholar
  220. Sonoda, E., Matsumoto, R., Hitoshi, Y., Ishii, T., Sugimoto, M., Araki, S., Tominaga, A., Yamaguchi, N., and Takatsu, K., 1989, Transforming growth factor β induces IgA production and acts additively with interleukin 5 for IgA production, J. Exp. Med. 170:1415.PubMedCrossRefGoogle Scholar
  221. Spaan, W. J. M., 1990, Towards a coronavirus recombinant DNA vaccine, Adv. Exp. Med. Biol. 276:201.PubMedCrossRefGoogle Scholar
  222. Spaan, W., Cavanagh, D., and Horzinek, M. C., 1988, Coronaviruses: Structure and genome expression, J. Gen. Virol. 69:2939.PubMedCrossRefGoogle Scholar
  223. Stoddart, C. A., and Scott, F. W., 1989, Intrinsic resistance of feline peritoneal macrophages to coronavirus infection correlates with in vivo virulence, J. Virol. 63:436.PubMedGoogle Scholar
  224. Stone, S. S., Kemeny, L. J., Woods, R. D., and Jensen, M. T, 1977, Efficacy of isolated colostral IgA, IgG, and IgM (A) to protect neonatal pigs against the coronavirus of transmissible gastroenteritis, Am. J. Vet. Res. 38:1285.PubMedGoogle Scholar
  225. Strober, W, and Harriman, G. R., 1989, The role of cells and cytokines in IgA isotype differentiation, Proceedings of the International Congress on Mucososal Immunolology, p 8A. LondonGoogle Scholar
  226. Sturman, L. S., 1977, Characterization of a coronavirus. I. Structural proteins: Effects of preparative conditions on the migration of Polyacrylamide gels, Virology 77:637.PubMedCrossRefGoogle Scholar
  227. Sturman, L. S., and Holmes, K. V., 1977, The molecular biology of coronaviruses. II. Glycoproteins of the viral envelope: Tryptic peptide analysis, Virology 77:650.PubMedCrossRefGoogle Scholar
  228. Sturman, L. S., and Holmes, K. V., 1983, The molecular biology of coronaviruses, Adv. Virus. Res. 28:36.Google Scholar
  229. Sturman, L. S., Ricard, C. S., and Holmes, K. V., 1985, Proteolytic cleavage of E2 glycoprotein of murine coronavirus: Activation of cell-fusing activity of virions by trypsin and separation of two different 90K cleavage fragments, J. Virol. 56:904.PubMedGoogle Scholar
  230. Sugiyama, K., Ishikama, R., and Fukuhara, N., 1986, Structural polypeptides of the murine coronavirus DVIM, Arch. Virol. 89:245.PubMedCrossRefGoogle Scholar
  231. Suñé, C., Jiménez, G., Correa, I., Bullido, M. J., Gebauer, F., Smerdou, C., and Enjuanes, L., 1990, Mechanisms of transmissible gastroenteritis coronavirus neutralization, Virology 177:559.PubMedCrossRefGoogle Scholar
  232. Suñé, C., Smerdou, C., Anton, I. M., Abril, P., Plana, J., and Enjuanes, L., 1991, A conserved coronavirus epitope, critical in virus neutralization, represented by internal image monoclonal anti-idiotypic antibodies, J. Virol. 65:6979.PubMedGoogle Scholar
  233. Toma, B., Duret, C., Chappuis, G., and Labadie, J., 1979, Péritonite infectieuse féline: étude des anticorps antivirus de la gastroentérite transmissible du porc par séroneutralisation et hémagglutionation passive, Rec. Méd. Vét. 155:541.Google Scholar
  234. Torres-Medina, A., 1975, Adult pigs carry TGE virus, in: Nebraska Swine Report, University of Nebraska. Lincoln Institute of Agriculture and Natural Resources. E. C. 75–219.Google Scholar
  235. Tuboly, T., Nagy, E., and Derbyshire, J. B., 1993, Potential viral vectors for the stimulation of mucosal antibody responses against enteric viral antigens in pigs, Res. Vet. Sci. 54:345.PubMedCrossRefGoogle Scholar
  236. Tung, F. Y. T., Abraham, S., Sethna, M., Hung, S. L., Sethna, P., Hogue, B. G., and Brian, D. A., 1992, The 9-kDa hydrophobic protein encoded at the 3’ end of the porcine transmissible gastro-enteritis coronavirus genome is membrane-associated, Virology 186:676.PubMedCrossRefGoogle Scholar
  237. Underdahl, N. R., Mebus, C. A., Stair, E. L., Rhodes, M. B., McGill, L. D., and Twiehaus, M. J., 1974, Isolation of transmissible gastroenteritis virus from lungs of market-weight swine, Am. J. Vet. Res. 35:1209.PubMedGoogle Scholar
  238. Underdahl, N. R., Mebus, C. A., and Torres-Medina, A., 1975, Recovery of transmissible gastro-enteritis virus from chronically infected experimental pigs, Am. J. Vet. Res. 36:1473.PubMedGoogle Scholar
  239. Utiger, A., Rosskpf, M., Guscetti, F., and Ackermann, M., 1993, Preliminary characterization of a monoclonal antibody specific for a viral 27 kD glycoprotein family synthesized in porcine epidemic diarrhoea virus infected cells, in: Coronavirus es: Molecular Biology and Virus-Host interactions (H. Laude and J. F. Vautherot, eds.), p. 197, Plenum Press, New York.Google Scholar
  240. Van Brunt, J., 1986, Fungi: The perfect host? Biotechnology 12:1057.Google Scholar
  241. Vancott, J. L., Brim, T. A., Simkins, R. A., and Saif, L. J., 1993, Isotype-specific antibody-secreting cells to transmissible gastroenteritis virus and porcine respiratory coronavirus in gut-associated and bronchus-associated lymphoid tissues of suckling pigs, J. Immunol. 150:3990.PubMedGoogle Scholar
  242. van der Most, R. G., and Bredenbeek, P. J., 1991, A domain at the 3’ end of the polymerase gene is essential for encapsidation of coronavirus defective interfering RNAs, J. Virol. 65:3219.PubMedGoogle Scholar
  243. van der Most, R. G., Heijnen, L., Spaan, W. J. M., and Degroot, R. J., 1992, Homologous RNA recombination allows efficient introduction of site-specific mutations into the genome of Coronavirus MHV-A59 via synthetic coreplicating RNAs, Nucleic Acids Res. 20:3375.PubMedCrossRefGoogle Scholar
  244. Van Nieuwstadt, A. P., and Pol, J. M. A., 1989, Isolation of a TGE-virus-related respiratory coronavirus causing fetal pneumonia in pigs, Vet. Rec. 124:43.PubMedCrossRefGoogle Scholar
  245. Van Nieuwstadt, A. P., Cornelissen, J. B. W. J., and Zetstra, T., 1988, Comparison of two methods for detection of transmissible gastroenteritis virus in feces of pigs with experimentally induced infection, Am. J. Vet. Res. 49:1836.PubMedGoogle Scholar
  246. Van Nieuwstadt, A. P., Zetstra, T., and Boonstra, J., 1989, Infection with porcine respiratory coronavirus does not fully protect pigs against intestinal transmissible gastroenteritis virus, Vet. Rec. 125:58.PubMedCrossRefGoogle Scholar
  247. Vaughn, E. M., Halbur, P. G., and Paul, P. S., 1994, Three new isolates of porcine respiratory coronavirus with various pathogenicities and spike gene deletions, J. Clin. Microbiol. 32:1809.PubMedGoogle Scholar
  248. Vennema, H., Rossen, J. W. A., Wesseling, J., Horzinek, M. C., and Rottier, P. J. M., 1992, Genomic organization and expression of the 3’ end of the canine and feline enteric coronaviruses, Virology 191:134.PubMedCrossRefGoogle Scholar
  249. Wagner, J. E., Beamer, P. D., and Ristic, M., 1973, Electron microscopy of intestinal epithelial cells of piglets infected with a transmissible gastroenteritis virus, Can. J. Comp. Med. 37:177.PubMedGoogle Scholar
  250. Wege, M., Siddell, S. G., and Ter Meulen, V, 1982, The biology and pathogenesis of coronaviruses, Curr. Top. Microbiol. Immunol. 99:165.PubMedCrossRefGoogle Scholar
  251. Weingartl, H. M., and Derbyshire, J. B., 1993a, Binding of porcine transmissible gastroenteritis virus by enterocytes from newborn and weaned piglets, Vet. Microbiol. 35:23.PubMedCrossRefGoogle Scholar
  252. Weingartl, H. M., and Derbyshire, J. B., 1993b, Cellular receptors for porcine transmissible gastro-enteritis virus, in: 74th Annual Meeting Conference of Research Workers in Animal Disease p. 12, Chicago.Google Scholar
  253. Wesley, R. D., 1990, Nucleotide sequence of the E2-peplomer protein gene and partial nucleotide sequence of the upstream polymerase gene of transmissible gastroenteritis virus (Miller strain), Adv. Exp. Med. Biol. 276:301.PubMedCrossRefGoogle Scholar
  254. Wesley, R. D., and Woods, R. D., 1993, Immunization of pregnant gilts with PRCV induces lactogenic immunity for protection of nursing piglets from challenge with TGEV, Vet. Microbiol. 38:40.CrossRefGoogle Scholar
  255. Wesley, R. D., Woods, R. D., Correa, I., and Enjuanes, L., 1988, Lack of protection in vivo with neutralizing monoclonal antibodies to transmissible gastroenteritis virus, Vet. Microbiol. 18:197.PubMedCrossRefGoogle Scholar
  256. Wesley, R. D., Cheung, A. K., Michael, D. D., and Woods, R. D., 1989, Nucleotide sequence of voronavirus TGEV genomic RNA: Evidence for 3 mRNA species between the peplomer and matrix protein genes, Virus Res. 13:87.PubMedCrossRefGoogle Scholar
  257. Wesley, R. D., Woods, R. D., and Cheung, A. K., 1991a, Genetic analysis of porcine respiratory coronavirus, an attenuated variant of transmissible gastroenteritis virus, J. Virol. 65:3369.PubMedGoogle Scholar
  258. Wesley, R. D., Wesley, I. V., and Woods, R. D., 1991b, Differentiation between transmissible gastroenteritis virus and porcine respiratory coronavirus using a cDNA probe, J. Vet. Diagn. Invest. 3:29.PubMedCrossRefGoogle Scholar
  259. Whitton, J. L., Tishon, A., Lewicki, H., Gebhard, J., Cook, T., Salvato, M., Joly, E., and Oldstone, M. B. A., 1989, Molecular analysis of a five-amino acid cytotoxic T-lymphocyte (CTL) epitope: An immunodominant region which induces nonreciprocal CTL cross-reactivity, J. Virol. 63:4303.PubMedGoogle Scholar
  260. Witte, K. H., and Walther, C., 1976, Age-dependent susceptibility of pigs to infection with the virus of transmissible gastroenteritis. Proceedings of the 4th International Congress of Pig Veterinary Society. Iowa State University, p. K3.Google Scholar
  261. Woode, G. N., 1969, Transmissible gastroenteritis of swine, Vet. Bull. 39:239.Google Scholar
  262. Woods, R. D., 1984, Efficacy of vaccination of sows with serologically related coronaviruses for control of transmissible gastroenteritis in nursing pigs, Am. J. Vet. Res. 45:1726.PubMedGoogle Scholar
  263. Woods, R. D., and Pedersen, N. C., 1979, Cross-protection studies between feline infectious peritonitis and porcine transmissible gastroenteritis viruses, Vet. Microbiol. 4:11.CrossRefGoogle Scholar
  264. Woods, R. D., and Wesley, R. D., 1986, Immune response in sows given transmissible gastroenteritis virus or canine coronavirus, Am. J. Vet. Res. 47:1239.PubMedGoogle Scholar
  265. Woods, R. D., Cheville, N. F., and Gallagher, J. E., 1981, Lesions in the small intestine of newborn pigs inoculated with procine, feline and canine coronaviruses, Am. J. Vet. Res. 42:1163.PubMedGoogle Scholar
  266. Yaling, Z., Ederveen, J., Egberink, H., Pensaert, M., and Horzinek, M. C., 1988, Porcine epidemic diarrhea virus (CV777) and feline infectious peritonitis virus (FIPV) are antigenically related, Arch. Virol. 102:63.CrossRefGoogle Scholar
  267. Yassen, S. A., and Johnson-Lussenburg, C. M., 1978, Comparative antigenic studies on coronaviruses, Int. Virol. 4:451.Google Scholar
  268. Yeager, C. L., Ashmun, R. A., Williams, R. K., Cardellichio, C. B., Shapiro, L. H., Look, A. T., and Holmes, K. V., 1992, Human aminopeptidase N is a receptor for human coronavirus 229E, Nature 357:420.PubMedCrossRefGoogle Scholar
  269. Yokomori, K., Asanaka, M., Stohlman, S. A., and Lai, M. M. C., 1993, A spike protein-dependent cellular factor other than the viral receptor is required for mouse hepatitis virus entry, Virology 196:45.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Luis Enjuanes
    • 1
  • Bernard A. M. van der Zeijst
    • 2
  1. 1.Centro Nacional de Biotecnología, CSICCampus Universidad Autónoma, CantoblancoMadridSpain
  2. 2.Institute of Infectious Diseases and Immunology, School of Veterinary MedicineUniversity of UtrechtTD UtrechtThe Netherlands

Personalised recommendations