High Field Conduction of Liquids in Contact with Polymeric Material with Reference to Electrorheological Fluids

  • P. Atten
  • J. N. Foulc
  • H. Benqassmi

Abstract

The conduction model of electrorheological (ER) effect appears to account qualitatively for the dependence of yield stress on electric field intensity in some ER fluids under DC applied voltage. This model is based on the assumption of the electrical conductivity of the suspending liquid varying exponentially as a function of the square root of the electric field. The field dependence of the liquid conduction in conditions typical of those of working ER fluids is investigated experimentally by examining the conduction properties of a layer of mineral oil lying between sheets of a slightly conducting polymer covering the electrodes. The results presented show that the current in the liquid arises mainly not from the field enhanced dissociation of electrolytic species dissolved in the liquid bulk but from injections of ions occurring at the solid/liquid interfaces.

Keywords

Bulk Conduction Metallic Electrode Liquid Conductivity Liquid Thickness Electrorheological Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.A. Anderson, Proceed. 3rd Intern. Conf. Electrorheological Fluids, R. Tao (Ed.), World Scientific, Singapore, 1992, pp. 81-90.Google Scholar
  2. [2]
    L.C. Davis, J. Appl. Phys., 72, p. 1334 (1992).CrossRefGoogle Scholar
  3. [3]
    J.-N. Foulc, N. Félici and P. Atten, C. R. Acad Sci. Paris, 314, Ser. II, pp. 1279–1283 (1992).Google Scholar
  4. [4]
    J.-N. Foulc, P. Atten and N. Félici, J. Electrostatics, 33, pp. 103–112 (1994).CrossRefGoogle Scholar
  5. [5]
    J.-N. Foulc, P. Atten and N. Félici, C. R. Acad Sci. Paris, 317, Ser. II, p. 5–11 (1993).Google Scholar
  6. [6]
    P. Atten, J.-N. Foulc and N. Félici, Int. J. Modern Physics B, 8, pp. 2731–2745 (1994).CrossRefGoogle Scholar
  7. [7]
    J.-N. Foulc and P. Atten, Proceed. 4th Intern. Conf. Electrorheological Fluids, R. Tao (Ed.), World Scientific, Singapore, 1994, pp 358-371.Google Scholar
  8. [8]
    N. Felici, Dir. Cur., 2, pp. 90–99 (1972).Google Scholar
  9. [9]
    A. Denat, B. Gosse and J.-P. Gosse, J. Electrostatics, 7, pp 205–225 (1979).CrossRefGoogle Scholar
  10. [10]
    G. Briere and F. Gaspard, J. Chimie Physique, 64, pp. 1071–1084 (1967).Google Scholar
  11. [11]
    J.J. Thomson and G.P. Thomson, “Conduction of electricity through gases”, Cambridge Univ. Press, London, 1928.Google Scholar
  12. [12]
    N. Bjerrum, Kgl. Danske Vid. Selskab, Math — fys medd., 7, p. 9 (1926).Google Scholar
  13. [13]
    R.M. Fuoss, J. Amer. Chem. Soc, 82, pp. 1013 (1960).CrossRefGoogle Scholar
  14. [14]
    L. Onsager, J. Chem. Phys., 2, pp 599–615 (1934).CrossRefGoogle Scholar
  15. [15]
    A. Persoons, J. Phys. Chem., 78, pp. 1210 (1974).CrossRefGoogle Scholar
  16. [16]
    F. Nauwelaers, L. Hellemans and A. Persoons, J. Phys. Chem., 80, pp 767–775 (1976).CrossRefGoogle Scholar
  17. [17]
    A. Denat, B. Gosse and J.-P. Gosse, J. Electrostatics, 12, pp 197–205 (1982).CrossRefGoogle Scholar
  18. [18]
    Z. Randriamalala, A. Denat, J.P. Gosse and B. Gosse, IEEE Trans. Electr. Insul, EI-20, pp 167–176 (1985).CrossRefGoogle Scholar
  19. [19]
    A. Denat, Doctoral Thesis, Grenoble University, 1982.Google Scholar
  20. [20]
    G. Briere, G. Cauquis, B. Gosse and D. Serve, J. Chimie Phys., 66, pp 44–53 (1969).Google Scholar
  21. [21]
    B. Gosse, Electroanal. Chem. & Interfacial Electrochem., 61, pp 265–279 (1975).CrossRefGoogle Scholar
  22. [22]
    D.F. Blossey, Phys. Rev. B, 9, pp. 5183–5187 (1974).CrossRefGoogle Scholar
  23. [23]
    K.P. Charle and F. Willig, Chem. Phys. Lett., 57, pp. 253–258 (1978).CrossRefGoogle Scholar
  24. [24]
    A. Alj, A. Denat, J.P. Gosse, B. Gosse and I. Nakamura, IEEE Trans. Electr. Insul, EI-20, pp 221–231 (1985).CrossRefGoogle Scholar
  25. [25]
    A. Denat, B. Gosse and J.-P. Gosse, J. Electrostatics, 11, pp 179–194 (1982).CrossRefGoogle Scholar
  26. [26]
    A. Alj, J.P. Gosse, B. Gosse, A. Denat and M. Nemamcha, Revue Phys. Appl, 22, pp 1043–1053 (1987).CrossRefGoogle Scholar
  27. [27]
    M. Hilaire, C. Marteau and R. Tobazeon, IEEE Trans. Electr. Insul, EI-23, pp 779–787 (1988).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • P. Atten
    • 1
  • J. N. Foulc
    • 1
  • H. Benqassmi
    • 1
  1. 1.Laboratoire d’Electrostatique et de Matériaux DiélectriquesCNRS and Joseph Fourier UniversityGrenoble-Cedex 9France

Personalised recommendations