Fatigue pp 295-304 | Cite as

Single-Trial Readiness Potentials and Fatigue

  • D. Popivanov
  • A. Mineva
  • J. Dushanova
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 384)

Abstract

The authors propose that the cognitive processes related to internal motivation and volition (e.g., intention and preparation of a voluntary action), influenced by central fatigue, could be identified and characterized by cerebral readiness potentials (RP) using methods of chaotic dynamics. The boundaries of single-trial RP and its successive phases can be detected by tracking the data dynamics, and are represented by chaotically behaved short EEG transitions.

Keywords

Chaotic Dynamic Correlation Dimension Chaotic Behavior Voluntary Action Voluntary Movement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrett G, Shibasaki H & Neshige R (1986). Cortical potentials preceding voluntary movement: evidence for three periods of preparation in man. Electroencephalography and Clinical Neurophysiology 83, 327–339.CrossRefGoogle Scholar
  2. Broomhead DS & King GP (1986). Extracting qualitative dynamics from experimental data. Physica 20D, 217–236.Google Scholar
  3. Chaouloff F (1991). Cerebral monoamines and fatigue. In: Atlan G, Beliveau L, Bouissou P, (eds.), Muscle Fatigue. Biochemical and Physiological Aspects, pp. 234–240. Paris: Masson.Google Scholar
  4. Elbert T, Ray WJ, Kowalik ZJ, Skinner JE, Graf KE & Birbaumer N (1994). Chaos and physiology: deterministic chaos in excitable cell assemblies. Physiological Reviews, 74, 1–47.PubMedGoogle Scholar
  5. Farmer JD & Sidorowich JJ (1987). Predicting chaotic time series. Physical Review Letters 59, 845–848.PubMedCrossRefGoogle Scholar
  6. Freude G, Ullsperger P & Pietschmann M (1987). Are self-paced repetitive fatiguing hand contractions accompanied by changes in movement-related brain potentials? In: Gantchev GN, Dimitrov B, Gatev P (eds.), Motor Control, pp. 99–103. New York: Plenum.CrossRefGoogle Scholar
  7. Grassberger P & Procaccia I (1983). Measuring the strangeness of strange attractors. Physica 9D, 189–208.Google Scholar
  8. Hashimoto S, Gemba H & Sasaki K (1980). Premovement slow cortical potentials and required muscle force in self-paced hand movements in the monkey. Brain Research 117, 415–423.CrossRefGoogle Scholar
  9. Kornhuber HH & Deecke L (1964). Hirnpotentialanderungen beim Menschen vor und nach Willkurbewegungen, dargestellt mit Magnetbundspeicherung und Ruckwartsanalyse. Pflügers Archiv 281, 52.Google Scholar
  10. Kristeva R, Cheyne D, Lang W, Lindinger G & Deecke L (1990). Movement-related potentials accompanying unilateral and bilateral finger movements with different inertial loads. Electroencephalography and Clinical Neurophysiology 75, 410–418.PubMedCrossRefGoogle Scholar
  11. Libet B (1985). Unconscious cerebral initiative and the role of conscious will in voluntary action. Behavioral and Brain Sciences 8, 529–566.CrossRefGoogle Scholar
  12. Maton B (1991). Central nervous changes in fatigue induced by local work. In: Atlan G, Beliveau L, Bouissou P (eds.), Muscle Fatigue. Biochemical and Physiological Aspects, pp. 207–221. Paris: Masson.Google Scholar
  13. Molnar M & Skinner JJ (1992). Low-dimensional chaos in event-related brain potentials. International journal of Neuroscience 66, 263–276.PubMedGoogle Scholar
  14. Nethery VM (1991). Central fatigue: the contribution of attentional focus. In: Atlan G, Beliveau L, Bouissou P (eds.), Muscle Fatigue. Biochemical and Physiological Aspects, pp. 243. Paris: Masson.Google Scholar
  15. Pfurtscheller G (1992). Event-related synchronization (ERS): an electrophysiological correlate of cortical areas at rest. Electroencephalography and Clinical Neurophysiology 83, 62–69.PubMedCrossRefGoogle Scholar
  16. Popivanov D. (1992). Time series analysis of brain potentials preceding voluntary movements. Medical & Biological Engineering & Computing 30, 9–14.CrossRefGoogle Scholar
  17. Popivanov D, Dushanova J, Mineva A & Krekule I (1993). Identification of slow EEG-transients by using chaotic models. In: Rosenfalck A (ed.), Proceedings of the IMIA-IFMBE Working Conference on “Biosignal Interpretation ”, pp. 198-201. Aalborg, Denmark.Google Scholar
  18. Popivanov D, Dushanova J, Mineva A & Krekule I (1995). Single-trial readiness potentials: stochastic and chaotic dynamical behavior. In: Stuart DG, Gantchev GN, Gurfinkel VS, Wiesendanger M (eds.), Motor Control VII, pp. 00–00. Tucson, AZ: Motor Control Press.Google Scholar
  19. Saltzberg B, Burton WD & Skinner JE (1988). Filtering for chaos.In: Harris G, Walker C (eds.), Proceedings of the 10th Annual International Conference of the IEEE in Medicine & Biology Society, pp. 1072-1073. New Orleans, LAGoogle Scholar
  20. Smith LA (1992). Identification and prediction of low dimensional dynamics. Physica D58, 50–76.Google Scholar
  21. Sugihara G & May RM (1990). Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344, 734–741.PubMedCrossRefGoogle Scholar
  22. Takens F (1981). Detecting strange attractors in turbulence. In: Rand DA, Young LS (eds.), Lecture Notes in Mathematics, vol. 898, pp. 366. Berlin: Springer.Google Scholar
  23. Tarkka IM & Hallett M (1990). Cortical topography of premotor potentials preceding self-paced, voluntary movement of dominant and non-dominant hands. Electroencephalography and Clinical Neurophysiology 75, 36–43.PubMedCrossRefGoogle Scholar
  24. Vautard R & Ghil M (1989). Singular spectrum analysis in nonlinear dynamics with applications to paleoclimatic time series. Physica D35, 395–424.Google Scholar
  25. Vautard R, Yiou P & Ghil M (1992). Singular spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D58, 95–126.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • D. Popivanov
    • 1
  • A. Mineva
    • 1
  • J. Dushanova
    • 1
  1. 1.Institute of PhysiologyBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations