Seeds pp 293-343 | Cite as

Mobilization of Stored Seed Reserves

  • J. Derek Bewley
  • Michael Black
Chapter

Abstract

The major mobilization of stored reserves in the storage organs commences after radicle elongation, i.e., it is a postgerminative event. In the growing regions (i.e., axis) some mobilization can occur before germination is completed; here the reserves are generally present in minor amounts, although the products of their hydrolysis might be important for early seedling establishment.

Keywords

Storage Protein Mung Bean Protein Body Castor Bean Aleurone Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Useful Literature References

Sections 7.1-7.4

  1. Ap Rees, T., 1974, in: Plant Biochemistry. Biochemistry, Series One, Volume 11 (H. L. Kornberg and D. C. Phillips, eds.), Butterworths, London, pp. 89–127 (carbohydrate catabolism pathways).Google Scholar
  2. Ashford, A. E., and Gubler, F., 1984, in: Seed Physiology, Volume 2. Germination and Reserve Mobilization (D. R. Murray, ed.), Academic Press, New York, pp. 117–162 (polysaccharide mobilization in endosperm).Google Scholar
  3. Beck, E., and Ziegler, P., 1989, Annu. Rev. Plant Physiol Plant Mol. Biol. 40:95–117 (starch metabolism).CrossRefGoogle Scholar
  4. Bewley, J. D., Leung, D. W. M., Maclsaac, S., Reid, J. S. G., and Xu, N., 1993, Plant Physiol. Biochem. 31:483–490 (transient starch accumulation in fenugreek cotyledons).Google Scholar
  5. Brown, H. T., and Morris, G. H., 1890, J. Chem. Soc. 57:458–528 (classic studies on cereal reserve mobilization).CrossRefGoogle Scholar
  6. Chandra Sekhar, K. N., and DeMason, D. A., 1990, Planta 181:53–61 (mobilization of reserves from date palm endosperm).Google Scholar
  7. Duffus, C. M., 1984, in: Storage Carbohydrates in Vascular Plants (D. H. Lewis, ed.), Cambridge University Press, Cambridge, pp. 321–352 (metabolism of reserve starch).Google Scholar
  8. Edelman, J., Shibko, S. I., and Keys, A. J., 1959, J. Exp. Bot. 10:178–189 (sucrose transport and scutellum).CrossRefGoogle Scholar
  9. Edwards, M., Dean, I. C. M., Bulpin, P. V., and Reid, J. S. G., 1985, Planta 163:133–140 (xyloglucan mobilization from nasturtium cotyledons).CrossRefGoogle Scholar
  10. Fincher, G. B., 1989, Annu. Rev. Plant Physiol. Plant Mol. Biol. 40:95–117 (endosperm mobilization in cereals).CrossRefGoogle Scholar
  11. Fincher, G. B., and Stone, B. A., 1974, Aust. J. Plant Physiol. 1:297–311 (hydrolysis in wheat endosperm).CrossRefGoogle Scholar
  12. Gibbons, G. C., 1979, Carlsberg Res. Commun. 44:353–356 (amylase in barley).CrossRefGoogle Scholar
  13. Halmer, P., 1985, Physiol Veg. 23:107–125 (review of starch mobilization).Google Scholar
  14. Jones, R. L., and Jacobsen, J. V., 1991, Int. Rev. Cytol. 126:49–87 (mobilizing enzymes in cereals).PubMedCrossRefGoogle Scholar
  15. Juliano, B. O., and Varner, J. E., 1969, Plant Physiol. 44:886–892 (starch breakdown in pea).PubMedCrossRefGoogle Scholar
  16. Lauriere, C., Doyen, C., Thevenot, C., and Daussant, J., 1992, Plant Physiol. 100:887–893 (β-amylases in cereals).PubMedCrossRefGoogle Scholar
  17. Longstaff, M. A., and Bryce, J. H., 1993, Plant Physiol. 101:281–289 (limit dextrinases in barley).Google Scholar
  18. Manners, D., 1985, in: Biochemistry of Storage Carbohydrates (P. M. Dey and R. A. Dixon, eds.), Academic Press, New York, pp. 149–204 (review of starch and its metabolism).Google Scholar
  19. Palmer, G. H., 1982, J. Inst. Brew. 88:145–153 (scutellar a-amylase).CrossRefGoogle Scholar
  20. Reid, J. S. G., 1971, Planta 100:131–142 (hydrolysis of the fenugreek endosperm).CrossRefGoogle Scholar
  21. Reid, J. S. G., and Bewley, J. D., 1979, Planta 147:145–150 (dual role of the fenugreek endosperm).CrossRefGoogle Scholar
  22. Zambou, K., Spyropoulos, C. G., Chinou, I., and Kontos, F., 1993, Planta 189:207–212 (saponin-like inhibitors in fenugreek endosperm).CrossRefGoogle Scholar

Section 7.5

  1. Behrends, W., Thieringer, R., Engeland, K., Kanau, W.-H., and Kindl, H., 1988, Arch. Biochem. Biophys. 263:170–177 (β-oxidation of unsaturated FFA).PubMedCrossRefGoogle Scholar
  2. Breidenbach, R. W., and Beevers, H., 1967, Biochem. Biophys. Res. Commun. 27:462–469 (discovery of glyoxysome).PubMedCrossRefGoogle Scholar
  3. Chapman, K. D., and Trelease, R. N., 1991, J. Cell Biol. 115:995–1007 (glyoxysome enlargement in cotyledons).PubMedCrossRefGoogle Scholar
  4. Donaldson, R. P., and Fang, T. K., 1987, Plant Physiol. 85:792–795 (recycling of NAD/NADH in glyoxysomes).PubMedCrossRefGoogle Scholar
  5. Gerhardt, B., 1991, in: Molecular Approaches to Compartmentation and Metabolic Regulation (A. H. C. Huang and L. Taiz, eds.), ASPP, Rockville, Md., pp. 121–128 (pathways of lipid catabolism).Google Scholar
  6. Gerhardt, B., 1992, Prog. Lipid Res. 31:417–446 (biochemistry of fatty acid degradation).PubMedCrossRefGoogle Scholar
  7. Gietl, C., 1991, in: Molecular Approaches to Compartmentation and Metabolic Regulation (A. H. C. Huang and L. Taiz, eds.), ASPP, Rockville, Md., pp. 138–150 (targeting of MDH to glyoxysomes).Google Scholar
  8. Gonzalez, E., 1986, Plant Physiol. 80:950–955 (formation of glyoxysomes in castor bean endosperm).PubMedCrossRefGoogle Scholar
  9. Halpin, C., Conder, M. J., and Lord, J. M., 1989, Planta 179:331–339 (import of matrix proteins into castor bean seed glyoxysomes).CrossRefGoogle Scholar
  10. Hills, M. J., and Beevers, H., 1987, Plant Physiol. 84:272–276 (Upases and oil mobilization in castor bean endosperm).PubMedCrossRefGoogle Scholar
  11. Huang, A. H. C., 1975, Plant Physiol. 55:555–558 (glycerol metabolism).PubMedCrossRefGoogle Scholar
  12. Muto, S., and Beevers, H., 1974, Plant Physiol. 54:23–28 (triacylglycerol hydrolysis in castor bean endosperm).PubMedCrossRefGoogle Scholar
  13. Olsen, L. J., and Harada, J. J., 1991, in: Molecular Approaches to Compartmentation and Metabolic Regulation (A. H. C. Huang and L. Taiz, eds.), ASPP, Rockville, Md., pp. 129–137 (mRNA and glyoxysome enzyme synthesis in cotyledons).Google Scholar
  14. Opute, F. I., 1975, Ann. Bot. 39:1057–1061 (oil palm triacylglycerol catabolism).Google Scholar
  15. Trelease, R. N., and Doman, D. C., 1984, in: Seed Physiology. Volume 2. Germination and Reserve Metabolism (D.R. Murray, ed.), Academic Press, New York, pp. 201–245 (overview of triacylglycerol catabolism in seeds).Google Scholar

Section 7.6

  1. Baumgartner, B., and Chrispeels, M. J., 1976, Plant Physiol. 58:1–6 (mung bean proteinase inhibitors).PubMedCrossRefGoogle Scholar
  2. Chrispeels, M. J., and Jones, R. L., 1980/81, Isr. J. Bot. 29:225–245 (endoplasmic reticulum and reserve hydrolysis).Google Scholar
  3. Dilworth, M. F., and Dure, L., III, 1978, Plant Physiol. 61:698–702 (asparagine and glutamine synthesis).PubMedCrossRefGoogle Scholar
  4. Elpidina, E. N., Voskoboynikova, N. E., Belozersky, M. A., and Dunaevsky, Y. E., 1991, Planta 185:46–52 (proteinase inhibitor in buckwheat).CrossRefGoogle Scholar
  5. Ericson, M. C., and Chrispeels, M. J., 1973. Plant Physiol. 52:98–104 (mung bean storage proteins).PubMedCrossRefGoogle Scholar
  6. Faye, L., Greenwood, J. S., Herman, E. M., Sturm, A., and Chrispeels, M. J., 1988, Planta 174:271–282 (α-mannosidase synthesis).CrossRefGoogle Scholar
  7. Hara, I., and Matsubara, H., 1980, Plant Cell Physiol. 21:219–232 (pumpkin seed globulins).Google Scholar
  8. Herman, E. M., Baumgartner, B., and Chrispeels, M. J., 1981, Eur. J. Cell Biol. 24:226–235 (autophagic vacuoles).PubMedGoogle Scholar
  9. Kern, R., and Chrispeels, M. J., 1978, Plant Physiol. 62:815–819 (amides in mung bean).PubMedCrossRefGoogle Scholar
  10. Kobrehel, K., Wong, J. H., Balogh, A., Kiss, F., Yee, B.C., and Buchanan, B. B., 1992, Plant Physiol. 99:919–924 (thioredoxin and reduction of wheat storage proteins).PubMedCrossRefGoogle Scholar
  11. Larson, L. A., and Beevers, H., 1965, Plant Physiol. 40:424–432 (homoserine in peas).PubMedCrossRefGoogle Scholar
  12. Miflin, B. J., Wallsgrove, R. M., and Lea, P. J., 1981, Curr. Top. Cell Regul., 20:1–43 (glutamine metabolism in plants).PubMedGoogle Scholar
  13. Mitsuhashi, W., and Oaks, A., 1994, Plant Physiol. 104:401–407 (endopeptidases in maize endosperm).PubMedGoogle Scholar
  14. Reilly, C. C., O’Kennedy, B. T., Titus, J. S., and Splittstoesser, W. E., 1978, Plant Cell Physiol 19:1235–1246 (pumpkin globulin solubilization).Google Scholar
  15. Richardson, M., 1991, Methods Plant Biochem. 5:259–305 (proteinase inhibitors in seeds).Google Scholar
  16. Salmenkallio, M., and Sopanen, T., 1989, Plant Physiol. 89:1285–1291 (amino acid and peptide uptake by cereal scutella).PubMedCrossRefGoogle Scholar
  17. Shutov, A. D., and Vaintraub, I. A., 1987, Phytochemistty 26:1557–1566 (review of proteinase A and B activities).CrossRefGoogle Scholar
  18. Stewart, C. R., and Beevers, H., 1967, Plant Physiol. 42:1587–1595 (castor bean amino acids).PubMedCrossRefGoogle Scholar
  19. Van Der Wilden, W., Herman, E. M., and Chrispeels, M. J., 1980, Proc. Natl. Acad. Sci. USA 77:428–432 (autophagic vacuoles).PubMedCrossRefGoogle Scholar
  20. Walker-Smith, D. J., and Payne, J. W., 1985, Planta 164:550–556 (synthesis of carriers in barley scutellum).CrossRefGoogle Scholar
  21. Wilson, K. A., 1986, in: Plant Proteolytic Enzymes, Volume 2, (M. J. Dalling, ed.), CRC Press, Boca Raton, Fla., pp. 19–47 (review of protein mobilization in dicot seeds).Google Scholar
  22. Wrobel, R., and Jones, B. L., 1992, Plant Physiol. 100:1508–1516 (proteolytic enzymes in germinated barley grains).PubMedCrossRefGoogle Scholar

Sections 7.7 and 7.8

  1. Hall, J. R., and Hodges, T. K., 1966, Plant Physiol. 41:1459–1464 (P metabolism in oats).PubMedCrossRefGoogle Scholar
  2. Lu, S.-Y., Kim, H., Eskin, N. A. M., Latta, M., and Johnson, S., 1987, J. Food Sci. 52:173–175 (phytases in Brassica cultivars).CrossRefGoogle Scholar
  3. Maiti, I. B., and Loewus, F. A., 1978, Planta 174:513–517 (myo-inositol metabolism).Google Scholar
  4. Organ, M. G., Greenwood, J. S., and Bewley, J. D., 1988, Planta 174:513–517 (phytin synthesis in germinated embryos).CrossRefGoogle Scholar
  5. Walker, K. A., 1974, Planta 116:91–98 (phytin in development and germination).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • J. Derek Bewley
    • 1
  • Michael Black
    • 2
  1. 1.Department of BotanyUniversity of GuelphGuelphCanada
  2. 2.Division of Life Sciences, King’s CollegeUniversity of LondonLondonEngland

Personalised recommendations