Exciton-Related Phenomena

  • Jai Singh
Part of the Physics of Solids and Liquids book series (PSLI)

Abstract

The interaction of laser light with dielectric and semiconductor materials has been a field of intense investigation since the invention of the laser. In this chapter, the mechanism of the processes of desorption of neutral atoms from nonmetallic crystalline surfaces due to laser irradiation and polymer ablation will be described. Incident pulses of intense laser beams of appropriate frequency impinging on a crystalline surface of nonmetallic compounds (semiconductors and alkali halides), cause the ejection of neutral atoms under certain limited conditions.(1–4) In addition, when a polymer surface is irradiated by the pulse of an ultraviolet laser beam, polymeric bonds are broken and fragments of polymers such as monomers, neutral atoms, and radicals are ejected from the surface.(5–7) The process of ejection of neutral atoms from semiconducting surfaces is called atomic desorption, and that of fragmentation of polymers due to irradiation is called polymer ablation. It is well-established that the origin of both processes is athermal.(1–4)

Keywords

Laser Fluence Emission Yield Intense Laser Pulse Covalent Electron Laser Sputtering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. H. Hwuttke, J. K. Howard, and R. F. Ross, U. S. Patent No. 3,585,088 (1968)Google Scholar
  2. I. B. Khaibullin, E. I. Shtyrkov, M. M. Zaripov, R. M. Bayazitov, and M. F. Galjantdinov, Radiat. Eff. 36, 225 (1978)CrossRefGoogle Scholar
  3. I. B. Khaibullin, E. I. Shtyrkov, and M. M. Zaripov, J. Phys. Soc. Jpn (Suppl. A) 49, 1281 (1980).Google Scholar
  4. 2.
    J. A. Van Vechten, in: Semimetals Probed by Ultrafast Laser Spectroscopy, Vol. 2, Academic, New York (1984), p. 95.Google Scholar
  5. 3.
    T. Nakayama, N. Itoh, T. Kawai, K. Hashimoto, and T. Sakata, Radiat. Eff. Lett. 67, 129 (1982).CrossRefGoogle Scholar
  6. 4.
    J. M. Moison and M. Bensonssan, Surf. Sci. 126, 294 (1983).ADSCrossRefGoogle Scholar
  7. 5.
    R. Srinivasan and V. Mayne-Banton, Appl. Phys. Lett. 41, 579 (1982).ADSCrossRefGoogle Scholar
  8. 6.
    Y. Kawapura, T. Toyoda, and M. Namba, Appl. Phys. Lett. 40, 374 (1982).ADSCrossRefGoogle Scholar
  9. 7.
    R. Srinivasan, in: Interfaces under Laser Irradiation (L. D. Daude, D. Bauerle, and M. Wautelet, eds.) Nijhof, Dordrecht (1987), p. 359.CrossRefGoogle Scholar
  10. 8.
    D. J. Ehrlich and J. Y. Tsao, Laser Macrofabrication, Academic, New York (1989).Google Scholar
  11. 9.
    T. Keyes, R. H. Clarke, and J. M. Isner, J. Phys. Chem. 89, 4194 (1985).CrossRefGoogle Scholar
  12. 10.
    J. Van Vechten, R. Tsu, and F. W. Saris, Phys. Lett. A74, 422 (1979).ADSGoogle Scholar
  13. 11.
    N. Itoh and T. Nakayama, Phys. Lett. A92, 471 (1982)ADSGoogle Scholar
  14. Nucl. Instr. Meth. B13, 550 (1986)Google Scholar
  15. N. Itoh, T. Nakayama, T. A. Tombrello, Phys. Lett. A108, 480 (1985).ADSGoogle Scholar
  16. 12.
    P. W. Anderson, Phys. Rev. Lett. 34, 953 (1975).ADSCrossRefGoogle Scholar
  17. 13.
    J. Singh, N. Itoh, and V. V. Truong, Appl. Phys. A49, 631 (1989).ADSGoogle Scholar
  18. 14.
    J. Singh and N. Itoh, Appl. Phys. A51, 427 (1990).ADSGoogle Scholar
  19. 15.
    Y. Toyozawa, Prog. Theoret. Phys. 8, 325 (1959).Google Scholar
  20. 16.
    A. Mooradian and G. B. Wright, Sol. St. Comm. 4, 431 (1966).ADSCrossRefGoogle Scholar
  21. 17.
    B. J. Garrison and R. Srinivasan, J. Appl. Phys. 57, 2090 (1985).CrossRefGoogle Scholar
  22. 18.
    E. Sutcliffe and R. Srinivasan, J. Appl. Phys. 60, 3315 (1986).ADSCrossRefGoogle Scholar
  23. 19.
    D. B. Kiss and P. Simon, Sol. St. Comm. 65, 1253 (1988).ADSCrossRefGoogle Scholar
  24. 20.
    J. Singh and N. Itoh, Chem. Phys. 148, 209 (1990).ADSCrossRefGoogle Scholar
  25. 21.
    J. Singh, J. Phys. c: Sol. St. Phys. 13, 3639 (1980).ADSCrossRefGoogle Scholar
  26. 22.
    H. R. Philipp, H. S. Cole, Y. S. Liu, and T. A. Sitrik, Appl. Phys. Lett. 48, 192 (1986).ADSCrossRefGoogle Scholar
  27. 23.
    G. D. Mahan, H. S. Cole, Y. S. Liu, and H. R. Philipp, Appl. Phys. Lett. 53, 2377 (1988).ADSCrossRefGoogle Scholar
  28. 24.
    G. Gorodetsky, T. G. Kazyaka, R. L. Melcher, and R. Srinivasan, Appl. Phys. Lett. 48, 828 (1985).ADSCrossRefGoogle Scholar
  29. 25.
    J. H. Brannon, J. R. Lankard, A. I. Baise, F. Burns, and J. Kaufman, J. Appl. Phys. 58, 2036 (1985).ADSCrossRefGoogle Scholar
  30. 26.
    D. M. Newns, T. F. Heinz, and J. A. Miesewich, Prog. Theoret. Phys. Suppl. 106, 411 (1991).ADSCrossRefGoogle Scholar
  31. 27.
    R. T. Williams and K. S. Song, J. Phys. Chem. Sol. 51, 679 (1990).ADSCrossRefGoogle Scholar
  32. 28.
    N. Itoh and K. Tanimura, J. Phys. Chem. Sol. 51, 717 (1990).ADSCrossRefGoogle Scholar
  33. 29.
    B. Stritzker, A. Pospieszczyk, and J. A. Tagle, Phys. Rev. Lett., 47, 356 (1981)ADSCrossRefGoogle Scholar
  34. J. C. Miller and R. E. Haglund, Jr. (eds.) Laser Ablation: Mechanisms and Applications, Springer-Verlag, Berlin, (1991).Google Scholar
  35. 30.
    J. M. Liu, Y. H. Kurz, and N. Bloembergen, Appl. Phys. Lett. 39, 755 (1981).ADSCrossRefGoogle Scholar
  36. 31.
    M. Ichige, Y. Matsumoto, and A. Namiki, Nucl. Instrum. Methods, B33, 820 (1980).ADSGoogle Scholar
  37. 32.
    T. Nakayama, Surf. Sci. 133, 101 (1983).ADSCrossRefGoogle Scholar
  38. 33.
    R. Kelly, J. J. Cuomo, P. A. Leary, J. E. Rothenberg, B. E. Braren, and C. F. Aliotta, Nucl. Instrum. Methods B9, 329 (1984).ADSGoogle Scholar
  39. 34.
    J. Kanasaki, I. K. Yu, Y. Nakai, and N. Itoh, Jpn. J. Appi. Phys. 32, 859 (1993).ADSCrossRefGoogle Scholar
  40. 35.
    K. Hattori, A. Okano, Y. Nakai, N. Itoh, and J. R. F. Haglund, J. Phys. Cond. Matter 3, 7001 (1991).ADSCrossRefGoogle Scholar
  41. 36.
    K. Hattori, A. Okano, Y. Nakai, and N. Itoh, Phys. Rev. B345, 8424 (1992).ADSGoogle Scholar
  42. 37.
    A. Okano, K. Hattori, Y. Nakai, and N. Itoh, Surf. Sci. 258, 671 (1991).CrossRefGoogle Scholar
  43. 38.
    J. Kanasaki, A. Okano, K. Ishikawa, Y. Nakai, and N. Itoh, Phys. Rev. Lett. 70, 2495 (1993).ADSCrossRefGoogle Scholar
  44. 39.
    J. Kanasaki, A. Okano, K. Ishikawa, Y. Nakai, and N. Itoh, J. Phys. Cond. Matter 5, 6497 (1993).ADSCrossRefGoogle Scholar
  45. 40.
    A. Okano, J. Kanasaki, Y. Nakai, and N. Itoh, J. Phys. Cond. Matter, (1994) in press.Google Scholar
  46. 41.
    Y. Nakai, K. Hattori, A. Okano, and N. Itoh, Phys. Rev. B45, 8424 (1992).ADSGoogle Scholar
  47. 42.
    A. Okano, A. Y. Matsuura, K. Hattori, N. Itoh, and J. Singh, J. Appl. Phys. 73, 3158 (1993).ADSCrossRefGoogle Scholar
  48. 43.
    W. A. Harrison, Electronic Structure and the Properties of Solids, Dover, New York (1989).Google Scholar
  49. 44.
    D. L. Dexter, J. Chem. Phys. 21, 836 (1953).ADSCrossRefGoogle Scholar
  50. 45.
    R. A. Faulkner, Phys. Rev. 175, 991 (1968).ADSCrossRefGoogle Scholar
  51. 46.
    P. Chiaradia, M. Fanfoni, P. Natalitte, P. D. Padova, L. J. Brillson, M. L. Slade, R. E. Viturro, D. Kilday, and G. Margaritondo, Phys. Rev. B39, 5128 (1989).ADSGoogle Scholar
  52. 47.
    G. S. Khoo and C. K. Ong, Phys. Rev. B47, 2031 (1993); J. Phys. Cond. Matters, 1187(1993).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Jai Singh
    • 1
  1. 1.Northern Territory UniversityDarwinAustralia

Personalised recommendations