Hepatic Triglyceride Lipase and Lipoprotein Lipase Action in Vitro and in Vivo

  • Lawrence Chan
  • Joachim Wölle
  • Jing-Yi Lo
  • Eva Zsigmond
  • Louis C. Smith
Chapter
Part of the NATO ASI Series book series (NSSA, volume 266)

Abstract

Hepatic triglyceride lipase (HTGL) and lipoprotein lipase (LPL) are two evolutionarily related enzymes that play key roles in lipoprotein metabolism. Hepatic triglyceride lipase appears to be involved in the hydrolysis of intermediate density lipoprotein (IDL) triglyceride to produce low density lipoprotein (LDL), and that of high density lipoprotein (HDL)-2 triglyceride and phospholipid to produce HDL-3 [1,2]. It may also be required for the uptake of HDL triglyceride and cholesteryl esters by the liver [3–5]. Lipoprotein lipase is essential for the metabolism of the triglyceride-rich lipoproteins, chylomicron and very low density lipoproteins (VLDL). The LPL-mediated hydrolysis of these lipoproteins produces chylomicron remnants and IDL, respectively, releasing necessary components for the production of HDL-2. Thus, both enzymes are involved in HDL metabolism, and HL activity is inversely, whereas LDL activity is directly correlated with plasma HDL levels [6].

Keywords

Lipoprotein Lipase Hepatic Lipase Intermediate Density Lipoprotein Lipoprotein Lipase Gene Hepatic Triglyceride Lipase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rao, S. N., Cortese, C., Miller, N.E., Levy, Y., and Lewis, B., Effects of heparin infusion on plasma lipoproteins in subjects with lipoprotein lipase deficiency. Evidence for a role of hepatic endothelial lipase in the metabolism of high-density lipoprotein subfractions in man, FEBS Lett. 150, 1982, 255–259.PubMedCrossRefGoogle Scholar
  2. 2.
    Kinnunen, P.K.J., Hepatic endothelial lipase: isolation, some characteristics, and physiological role, in: “Lipases,” B. Borgstrom and H.L. Brockman, eds., Elsevier/North-Holland, New York, 1984, 307–328.Google Scholar
  3. 3.
    Kuusi, T., Kinnunen, P.K.J., and Nikkila, E.A., Hepatic endothelial lipase antiserum influences rat plasma low and high density lipoproteins in vivo, FEBS Lett. 104, 1979, 384–388.PubMedCrossRefGoogle Scholar
  4. 4.
    Jansen, H., van Tol, A., and Hulsman, W.C., On the metabolic function of heparin-releasable liver lipase, Biochem. Biophys. Res. Commun. 92, 1980, 53–59.Google Scholar
  5. 5.
    Bamberger, M., Lund-Katz, S., Phillips, M., and Rothblat, G.H., Mechanism of the hepatic lipase-induced accumulation of high-density lipoprotein cholesterol by cells in culture, Biochemistry 24, 1985, 3693–3701.PubMedCrossRefGoogle Scholar
  6. 6.
    Blades, B., Vega, G.L., and Grundy, S.M., Activities of lipoprotein lipase and hepatic triglyceride lipase in postheparin plasma of patients with low concentrations of HDL cholesterol. Arteriosclerosis and Thrombosis 13:, 1993, 1227–1235.Google Scholar
  7. 7.
    Verhoeven, A.J.M., and Jansen, H., Secretion of rat hepatic lipase is blocked by inhibition of oligosaccharide processing at stage of glucosidase I, J. Lipid Res. 31, 1990, 1883–1893.PubMedGoogle Scholar
  8. 8.
    Verhoeven, AJ.M., and Jansen, H., Secretion-coupled increase in the catalytic activity of rat hepatic lipase, Biochim. Biophys. Acta 1086, 1991, 49–56.CrossRefGoogle Scholar
  9. 9.
    Ben-Zeev, O., Doolittle, M.H., Davis, R.C., Elovson, J., and Schotz, M.C., Maturation of lipoprotein lipase. Expression of full catalytic activity requires glucose trimming but no translocation to the cis-Golgi compartment, J. Biol. Chem. 267, 1992, 6219–6227.PubMedGoogle Scholar
  10. 10.
    Leitersdorf, E., Stein, O., and Stein, Y., Synthesis and secretion of triacylglycerol lipase by cultured rat hepatocytes, Biochim. Biophys. Acta 794, 1984, 261–268.CrossRefGoogle Scholar
  11. 11.
    Chajek-Shaul, T., Friedman, G., Knobler, H., Stein, O., Etienne, J., and Stein, Y., Importance of different steps of glycosylation for the activity and secretion of lipoprotein lipase in rat preadipocytes studied with monensin and tunicamycin, Biochim. Biophys. Acta 873, 1985, 123–134.Google Scholar
  12. 12.
    Amri, E.-Z., Vannier, C., Etienne, J., and Ailhaud, G., Maturation and secretion of lipoprotein lipase in cultured adipose cells. II. Effects of tunicamycin on activation and secretion of the enzyme. Biochim. Biophys. Acta 875, 1986, 334–343.PubMedCrossRefGoogle Scholar
  13. 13.
    Olivecrona, T., Chernik, S.S., Bengtsson-Olivecrona, G., Garison, M., and Scow, R., Synthesis and secretion of lipoprotein lipase in 3T3–L1 adipocytes: demonstration of inactive form of lipase in cells, J. Biol. Chem. 262, 1987, 10748–10759.PubMedGoogle Scholar
  14. 14.
    Semenkovich, C.F., Luo, C.-C., Nakanishi, M.K., Chen, S.-H., Smith, L.C., and Chan, L., In vitro expression and site-specific mutagenesis of the cloned human lipoprotein lipase gene, J. Biol. Chem. 265, 1990, 5429–5433.PubMedGoogle Scholar
  15. 15.
    Stahnke, G., Davis, R.C., Doolittle, M.H., Wong, H., Schotz, M.C., and Will, H., Effect of N-linked Glycosylation on hepatic lipase activity. J. Lipid Res. 32, 1991, 477–484.PubMedGoogle Scholar
  16. 16.
    Wölle, J., Jansen, H., Smith, L.C., and Chan, L., Functional role of N-linked glycosylation in human hepatic lipase: asparagine-56 is important for both enzyme activity and secretion, J. Lipid Res. 34, 1993, 2169–2176.PubMedGoogle Scholar
  17. 17.
    Stephens, P.E., and Cockett, M.I., The construction of a highly efficient and versatile set of mammalian expression vectors, Nucleic Acids Res. 17, 1989, 7110.PubMedCrossRefGoogle Scholar
  18. 18.
    Cockett, M.I., Bebbington, C.R., and Yarranton, G.T., The use of engineered E1A genes to transactivate the hCMV-MIE promoter in permanent CHO cell lines, Nucl. Acids Res. 19, 1990, 319–325.CrossRefGoogle Scholar
  19. 19.
    Faustinella, F., Chang, A., Van Biervliet, J.P., Rosseneu, M., Vinaimont, N., Smith, L.C., Chen, S.-H., and Chan, L., Catalytic triad residue mutation (Asp 156—>Gly) causing familial lipoprotein lipase deficiency: coinheritance with a nonsense mutation (Ser 447—*Ter) in a Turkish family, J. Biol. Chem. 266, 1991, 14418–14424.PubMedGoogle Scholar
  20. 20.
    Ishimura-Oka, K., Faustinella, F., Kihara, S., Smith, L.C., Oka, K., and Chan, L., A missense mutation (Trp86—*Arg) in exon 3 of the lipoprotein lipase gene: a cause of familial chylomicronemia, Am. J. Hum. Genet. 50, 1992, 1275–1280.PubMedGoogle Scholar
  21. 21.
    Ishimura-Oka, K., Semenkovich, C.F., Faustinella, F., Goldberg, I.J., Shachter, N., Smith, L.C., Coleman, T., Hide, W.A., Brown, W.V., Oka, K., and Chan, L., A missense (Asp250Mn) mutation in the lipoprotein lipase gene in two unrelated families with familial lipoprotein lipase deficiency, J. Lipid Res. 33, 1992, 745–754.PubMedGoogle Scholar
  22. 22.
    Faustinella, F., Smith, L.C., Semenkovich, C.F., and Chan, L., Structural and functional roles of highly conserved serines in human lipoprotein lipase: evidence that Serine 132 is essential for enzyme catalysis, J. Biol. Chem. 266, 1991, 9481–9485.PubMedGoogle Scholar
  23. 23.
    Faustinella, F., Smith, L.C., and Chan, L., Functional topology of a surface loop shielding the catalytic center in lipoprotein lipase, Biochemistry 31, 1992, 7219–7223.PubMedCrossRefGoogle Scholar
  24. 24.
    Winkler, F.K., D’Arcy„ A., and Hunziker, W., Structure of human pancreatic lipase, Nature 343, 1990, 771–774.PubMedCrossRefGoogle Scholar
  25. 25.
    Hide, W.A., Chan, L., and Li, W.-H., Structure and evolution of the lipase super-family, J. Lip. Res. 33, 1992, 167–178.Google Scholar
  26. 26.
    Zsigmond, E., and Chan, L., Transgenic mice expressing lipoprotein lipase, Clin. Res. 40, 1992, 291A.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Lawrence Chan
    • 1
  • Joachim Wölle
    • 1
  • Jing-Yi Lo
    • 1
  • Eva Zsigmond
    • 1
  • Louis C. Smith
    • 1
  1. 1.Departments of Cell Biology and MedicineBaylor College of MedicineHoustonUSA

Personalised recommendations