Quantitative Aspects of Receptor Aggregation

  • Henry Metzger
  • Byron Goldstein
  • Ute Kent
  • Su-Yau Mao
  • Clara Pribluda
  • Victor Pribluda
  • Carla Wofsy
  • Toshiyuki Yamashita
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 365)

Abstract

The critical role aggregation plays in antibody-mediated activation of cellular responses is now familiar to immunologists. The experimental evidence that led to that understanding has been recounted on several occasions1,2 and the interpretation of the data has stood up well to the newer findings particularly as they relate to cell receptors. It is likewise well known that aggregation is also a widely used mechanism by systems outside those central to the immune response3. In this brief review we wish to focus on what progress has been made in extending our knowledge about some quantitative aspects of the aggregation mechanism.

Keywords

Mast Cell Human Growth Hormone Antigen Receptor Receptor Aggregation FceRI Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Metzger. The effect of antigen binding on the properties of antibody. Adv.Immunol. 28:169 (1974).CrossRefGoogle Scholar
  2. 2.
    H. Metzger. Transmembrane signaling: The joy of aggregation. J.Immunol. 149:1477 (1992).PubMedGoogle Scholar
  3. 3.
    A. Ullrich and J. Schlessinger. Signal transduction by receptors with tyrosine kinase activity. Cell 61:203 (1990).PubMedCrossRefGoogle Scholar
  4. 4.
    B.C. Cunningham, M. Ultsch, A.M. De Vos, M.G. Mulkerrin, K.R. Clauser and J.A. Wells. Dimerization of the extracellular domain of the human growth hormone receptor by a single hormone molecule. Science 254:821 (1991).PubMedCrossRefGoogle Scholar
  5. 5.
    A.M. De Vos, M. Ultsch and A.A. Kossiakoff. Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science 255:306 (1992).PubMedCrossRefGoogle Scholar
  6. 6.
    W. Chao and M.S. Olson. Platelet-activating factor: Receptors and signal transduction. Biochem. J. 292:617 (1993).PubMedGoogle Scholar
  7. 7.
    J. Schlessinger. Signal transduction by allosteric receptor oligomerization. TIBS 13:442 (1988).Google Scholar
  8. 8.
    D.M. Segal, J.D. Taurog and H. Metzger. Dimeric immunoglobulin E serves as a unit signal for mast cell degranulmon. Proc.Natl.Acad.Sci.USA 74:2993 (1977).PubMedCrossRefGoogle Scholar
  9. 9.
    C. Fewtrell and H. Metzger. Larger oligomers of IgE are more effective than dimers in stimulating rat basophilic leukemia cells. J. Immunol. 125:701 (1980).PubMedGoogle Scholar
  10. 10.
    K. Ishizaka and D.H. Campbell. Biologic activity of soluble antigen-antibody complexes IV. The inhibition of the skin reactivity of soluble complexes and the PCA reaction by heterologous complexes. J. Immunol. 83:116 (1959).PubMedGoogle Scholar
  11. 11.
    Fewtrell, C. Activation and desensitization of receptors for IgE on tumor basophils. In: Calcium in Biological Systems, edited by Rubin, R.P., Weiss, G.P. and Putney, J.W.Jr. New York: Plenum Publishing Corporation, 1985, p. 129–135.CrossRefGoogle Scholar
  12. 12.
    A. Kagey-Sobotka, D.W. MacGlashan and L.M. Lichtenstein. Role of receptor aggregation in triggering IgE-mediated reactions. Fed.Proc. 41:12 (1982).PubMedGoogle Scholar
  13. 13.
    J.M. Oliver, J. Seagrave, R.F. Stump, J.R. Pfeiffer and G.G. Deanin. Signal transduction and cellular response in RBL-2H3 mast cells. Prog.Allergy 42:185 (1988).PubMedGoogle Scholar
  14. 14.
    R. Paolini, M.-H. Jouvin and J.-P. Kinet. Phosphorylation and dephosphorylation of the high-affinity receptor for immunoglobulin E immediately after receptor engagement and disengagement. Nature 353:855 (1991).PubMedCrossRefGoogle Scholar
  15. 15.
    D. Holowka and B. Baird. Structure and function of the high-affinity receptor for immunoglobulin E. Cell.Molec.Mech.Inflam. 1:173 (1990).Google Scholar
  16. 16.
    U.M. Kent, S.-Y. Mao, C. Wofsy, B. Goldstein, S. Ross and H. Metzger. Dynamics of signal transduction after aggregation of cell-surface receptors: Studies on the Type I receptor for IgE. Proc.Natl.Acad.Sci.USA 91:3087 (1994).PubMedCrossRefGoogle Scholar
  17. 17.
    A.D. Keegan and W.E. Paul. Multichain immune recognition receptors: Similarities in structure and signaling pathways. Immunol.Today 13:63 (1992).PubMedCrossRefGoogle Scholar
  18. 18.
    D.G. Orloff, C. Ra, S.J. Frank, R.D. Klausner and J.-P. Kinet. Family of disulfide-linked dimers containing the zeta and eta chains of the T-cell receptor and the gamma chain of Fc receptors. Nature 347:189 (1990).PubMedCrossRefGoogle Scholar
  19. 19.
    D. Qian, A.I. Sperling, D.W. Lancki, Y. Tatsumi, T.A. Barrett, J.A. Bluestone and F.W. Fitch. The y chain of the high affinity receptor for IgE is a major functional subunit of the T-cell antigen receptor complex in γδ T lymphocytes. Proc.Natl.Acad.Sci.USA 90:11875 (1993).PubMedCrossRefGoogle Scholar
  20. 20.
    M.R. Jarvis and E.W. Voss, Jr. Consequences of avidity in lymphocyte receptor-multivalent antigen binding in affinity maturation. Mol.Immunol. 19:1063 (1982).PubMedCrossRefGoogle Scholar
  21. 21.
    H. Metzger. A comment on the “Speculation” of Jarvis and Voss [letter]. Mol.Immunol. 19:1071 (1982).PubMedCrossRefGoogle Scholar
  22. 22.
    M.T. De Magistris, J. Alexander, M. Coggeshall, A. Altman, F.C. Gaeta, H.M. Grey and A. Sette. Antigen analog-major histocompatibility complexes act as antagonists of the T cell receptor. Cell 68:625 (1992).PubMedCrossRefGoogle Scholar
  23. 23.
    L. Racioppi, F. Ronchese, L.A. Matis and R.N. Germain. Peptide-major histocompatibility complex class II complexes with mixed agonist / antagonist properties provide evidence for ligand-related differences in T cell receptor-dependent intracellular signaling. J.Exp.Med. 177:1047 (1993).PubMedCrossRefGoogle Scholar
  24. 24.
    M. Benhamou and R.P. Siraganian. Protein tyrosine phosphorylation: An essential component of FcεRI signaling. Immunol.Today 13:195 (1992).PubMedCrossRefGoogle Scholar
  25. 25.
    M.A. Beaven and H. Metzger. Signal transduction by Fc receptors: The FcεRI case. Immunol.Today 14:222 (1993).PubMedCrossRefGoogle Scholar
  26. 26.
    E. Eiseman and J.B. Bolen. Engagement of the high-affinity IgE receptor activates src protein-related tyrosine kinases. Nature 355:78 (1992).PubMedCrossRefGoogle Scholar
  27. 27.
    M. Benhamou, N.J.P. Ryba, H. Kihara and R.P. Siraganian. Protein-tyrosine kinase p72syk in high affinity IgE receptor signaling. J.Biol.Chem. 268:23318 (1993).PubMedGoogle Scholar
  28. 28.
    R. Paolini, R. Numerof and J.-P. Kinet. Phosphorylation/dephosphorylation of high-affinity IgE receptors: A mechanism for coupling/uncoupling a large signaling complex. Proc.Natl.Acad.Sci.USA 89:10733 (1992).PubMedCrossRefGoogle Scholar
  29. 29.
    V.S. Pribluda and H. Metzger. Transmembrane signaling by the high affinity IgE receptor on membrane preparations. Proc.Natl.Acad.Sci.USA 89:11446 (1992).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Henry Metzger
    • 1
  • Byron Goldstein
    • 2
  • Ute Kent
    • 1
  • Su-Yau Mao
    • 1
  • Clara Pribluda
    • 1
  • Victor Pribluda
    • 1
  • Carla Wofsy
    • 3
  • Toshiyuki Yamashita
    • 1
  1. 1.Arthritis & Rheumatism Branch, National Institute of Arthritis and Musculoskeletal and Skin DiseasesNational Institutes of HealthBethesdaUSA
  2. 2.Theoretical Biology and BiophysicsLos Alamos National LaboratoryLos AlamosUSA
  3. 3.Department of Mathematics and StatisticsUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations