Specific CD45 Isoforms Regulate T Cell Ontogeny and Are Functionally Distinct in Modifying Immune Activation

  • Jamey D. Marth
  • Christopher J. Ong
  • Daniel Chui
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 365)

Abstract

The antigen receptor complex on the cell surface of T lymphocytes is one of the most modular signal transduction systems yet defined. This characteristic emanates from various mechanisms that promote intermolecular associations between the αβ T cell receptor and the enzymes that transduce the intracellular biological signal cascade (reviewed in 1). Among the multiple proteins that regulate cellular responses following T cell receptor (TCR) stimulation, the CD45 tyrosine phosphatase is a crucial effector. T lymphocytes that lack CD45 expression at the cell surface are unable to transmit immunologic activation signals that initiate from TCR interaction with antigen and major histocompatibility (MHC) molecules (2).

Keywords

PTPase Activity CD45 Exon Thymocyte Subpopulation CD45 Transgenic Mouse CD45 Tyrosine Phosphatase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.A. Janeway. The T cell receptor as a multicomponent signaling machine: CD4/CD8 coreceptors and CD45 in T cell activation. Ann. Rev. Immunol. 10:645 (1992).CrossRefGoogle Scholar
  2. 2.
    J.T. Pingel and M. L. Thomas. Evidence that the leukocyte-common antigen is required for antigen-induced T lymphocyte proliferation. Cell 58:1055 (1989).PubMedCrossRefGoogle Scholar
  3. 3.
    M.L. Thomas and L. Lefrancois. Differential expression of the leukocyte common antigen family, Immunol. Today 9:320 (1988).PubMedCrossRefGoogle Scholar
  4. 4.
    I.S. Trowbridge, H. Ostergaard, and P. Johnson. CD45: A leukocyte-specific member of the protein tyrosine phosphatase family. Biochem. Biophys. Acta. 1095:46 (1991).PubMedCrossRefGoogle Scholar
  5. 5.
    L. Lefrancois and T. Goodman. Developmental sequence of T200 antigen modificationsin murine T cells. J. Immunol. 139:3718 (1987).PubMedGoogle Scholar
  6. 6.
    A.N. Akbar, L. Terry, A. Timms, P.C.L. Beverley, and G. Janossy. Loss of CD45R and gain of UCHL1 reactivity is a feature of primed T cells. J. Immunol. 140:2171 (1988).PubMedGoogle Scholar
  7. 7.
    H.M. Serra, J.F. Krowka, J.A. Ledbetter, and L.M. Pilarski. Loss of CD45R (Lp220) represents a post-thymic T cell differentiation event. J. Immunol. 140:1435 (1988).PubMedGoogle Scholar
  8. 8.
    MX. Birkeland, P. Johnson, I.S. Trowbridge, and E. Puré. Changes in CD45 isoform expression accompany antigen-induced murine T-cell activation. Proc. Natl. Acad. Sci. USA 86:6734 (1989).PubMedCrossRefGoogle Scholar
  9. 9.
    D.M. Rothstein, A. Yamada, S.F. Schlossman, and C. Morimoto. Cyclic regulation of CD45 isoform expression in a long term human CD4+CD45RA+ T cell line. J. Immunol. 146:1175 (1991).PubMedGoogle Scholar
  10. 10.
    K.S. Hathcock, G. Laszlo, H.B. Dickler, S.O. Sharrow, P. Johnson, I.S. Trowbridge, and R.J. Hodes. Expression of variable exon A-, B-, and C-specific CD45 determinants on peripheral and thymic T cell populations. J. Immunol. 148:19 (1992).PubMedGoogle Scholar
  11. 11.
    D.M. Rothstein, H. Saito, M. Streuli, S.F. Schlossman, and C. Morimoto. The alternative splicing of the CD45 tyrosine phosphatase is controlled by negative regulatory trans-acting splicing factors. J. Biol. Chem. 267:7139 (1992).PubMedGoogle Scholar
  12. 12.
    R. Pulido and F. Sanchez-Madrid. Biochemical nature and topographic localization of epitopes defining four distinct CD45 antigen specificities. J. Immunol. 143:1930 (1989).PubMedGoogle Scholar
  13. 13.
    T.R. Mosmann, H. Cherwinski, M.W. Bond, M.A. Giedlin, and R.L. Coffman. Two types of murine helper T cell clone: I. Definition according to profiles of lymphokine activities and secreted properties. J. Immunol. 136:2348 (1986).PubMedGoogle Scholar
  14. 14.
    J.A. Byrne, J.L. Butler, and M.D. Cooper. Differential activation requirements for virgin and memory T cells. J. Immunol. 141:3249 (1988).PubMedGoogle Scholar
  15. 15.
    S. Huet, L. Boumsell, J. Dausset, L. Degos, and A. Bernard. The required nteraction between monocytes and perpiheral blood T-lymphocytes (T-PBL) upon activation via CD2 or CD3. Role of HLA class I molecule from accessory cells and the differential response of T-PBL subsets. Eur. J.Immunol. 18:1187(1988).PubMedCrossRefGoogle Scholar
  16. 16.
    K, Bottomly, M. Luqman, L. Greenbaum, S. Carding, J. West, T. Pasqualini, and D.B. Murphy. A monoclonal antibody to murine CD45R distinguishes CD4 T cell populations that produce different cytokines. Eur. J. Immunol. 19:617(1989).PubMedCrossRefGoogle Scholar
  17. 17.
    U. Dianzani, M. Luqman, J. Rojo, J. Yagi, J.L. Baron, A. Woods, C.A. Janeway, and K. Bottomly. Molecular assocations on the T cell surface correlate with immunological memory. Eur. J. Immunol. 20:2249 (1990).PubMedCrossRefGoogle Scholar
  18. 18.
    M. Luqman, P. Johnson, I. Trowbridge, and K. Bottomly. Differential expression of the alternatively spliced exons of murine CD45 in Th1 and Th2 cell clones. Eur. J. Immunol. 21:17 (1991).PubMedCrossRefGoogle Scholar
  19. 19.
    M. Luqman and K. Bottomly. Activation requirements for CD4+ T cells differing in CD45R expression. J. Immunology 149:2300 (1992).Google Scholar
  20. 20.
    C.A. Michie, A. McLean, C. Alcock, and P.C.L. Beverley. Lifespan of human lymphocyte subsets defined by CD45 isoforms. Nature 360:264 (1992).PubMedCrossRefGoogle Scholar
  21. 21.
    C.J. Ong, D. Chui, H.-S. Teh, and J.D. Marth. Thymic CD45 tyrosine phosphatase regulates apoptosis and MHC-restricted negative selection. J. Immunol. 152, in press (1994).Google Scholar
  22. 22.
    D. Chui, C.J. Ong, P. Johnson, H.-S. Teh, and J.D. Marth. Specific CD45 isoforms differentially regulate T cell receptor signaling. EMBO J., 13:798 (1994).PubMedGoogle Scholar
  23. 23.
    MP. Cooke, K.M. Abraham, K. A. Forbush, and R.M. Perlmutter. Regulation of T cell receptor signaling by a src family protein-tyrosine kinase (p59fyn). Cell 65:281 (1991).PubMedCrossRefGoogle Scholar
  24. 24.
    M. Appleby, J.A. Gross, M.P. Cooke, S.D. Levin, X. Qian, and R.M. Perlmutter. Defective T cell receptor signaling in mice lacking the thymic form of p59fyn. Cell 70:751 (1992).PubMedCrossRefGoogle Scholar
  25. 25.
    K.E. Chaffin, C.R. Beals, K.A. Forbush, T.M. Wilkie, M.I. Simon, and R.M. Perlmutter. Dissection of thymocyte signaling pathways by in vivo expression of pertussis-toxin ADP ribosyltransferase. EMBO J. 9:3821 (1990).PubMedGoogle Scholar
  26. 26.
    K.M. Abraham, S.D. Levin, J.D. Marth, K.A. Forbush, and R.M. Perlmutter. Delayed thymocyte development induced by augmented expression of p56lck. J. Exp. Med. 173:1421 (1991).PubMedCrossRefGoogle Scholar
  27. 27.
    C.L. Sentman, J.R. Shutter, D. Hockenbery, O. Kanagawa, and S.J. Korsmeyer. bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell 67:879 (1991).PubMedCrossRefGoogle Scholar
  28. 28.
    J.P. Deans, A.W. Boyd, and L.M. Pilarski. Transitions from high to low molecular weight isoforms of CD45 (T200) involve rapid activation of alternate mRNA splicing and slow turnover of surface CD45R. J. Immunol. 143:1233 (1989).PubMedGoogle Scholar
  29. 29.
    Y. Minami, F.J. Stafford, J. Lippincott-Schwartz, L.C. Yuan, and R.D. Klausner. Novel. redistribution of an intracellular pool of CD45 accompanies T cell activation. J. Biol. Chem. 266:9222 (1991).PubMedGoogle Scholar
  30. 30.
    O. Leo, M. Foo, D.H. Sachs, L.E. Samelson, and J.A. Bluestone. Identification of a monoclonal antibody specific for a murine T3 polypeptide. Proc. Natl. Acad. Sci. USA 84:1374 (1987).PubMedCrossRefGoogle Scholar
  31. 31.
    K. Kishihara, J. Penninger, V.A. Wallace, T.M. Kundig, K. Kawai, A. Wakeham, E. Timms, K. Pfeffer, P.S. Ohashi, M.L. Thomas, C. Furlonger, C.J. Paige, and T.W. Mak. Normal B lymphocyte development but impaired T cell maturation in CD45-exon6 protein tyrosine phosphatase-deficient mice. Cell 74:143 (1993).PubMedCrossRefGoogle Scholar
  32. 32.
    H.L. Ostergaard, D.A. Shackelford, T.R. Hurley, P. Johnson, R. Hyman, B.M. Sefton, and I.S. Trowbridge. Expression of CD45 alters phosphorylation of the lck-encoded tyrosine protein kinase in murine lymphoma cells. Proc. Natl. Acad. Sci. USA 86:8959 (1989).PubMedCrossRefGoogle Scholar
  33. 33.
    E.D. Cahir McFarland, T.R. Hurley, J.T. Pingel, B.M. Sefton, A. Shaw, and M.L. Thomas. Correlation between Src family member regulation by the protein-tyrosine-phosphatase CD45 and transmembrane signaling through the T-cell receptor. Proc. Natl. Acad. Sci. USA 90:1402 (1993).CrossRefGoogle Scholar
  34. 34.
    N. Killeen, A. Moriarty, H.-S. Teh, and D.R. Littman. Requirement for CD8-major histocompatibility complex class I interaction in positive and negative selection of developing T cells. J. Exp. Med. 176:89 (1992).PubMedCrossRefGoogle Scholar
  35. 35.
    N.S.C. van Oers, A.M. Garvin, C.B. Davis, K.A. Forbush, D.A. Carlow, D.R. Littman, R.M. Perlmutter, and H.-S. Teh. Disruption of CD8-dependent negative and positive selection is correlated with a decrease in association between CD8 and the protein tyrosine kinase, p56lck. Eur. J. Immunol. 22:735 (1992).PubMedCrossRefGoogle Scholar
  36. 36.
    A.C. Carrera, C. Baker, T.M. Roberts, and D.M. Pardoll. Tyrosine kinase triggering in thymocytes undergoing positive selection. Eur. J. Immunol. 22:2289 (1992).PubMedCrossRefGoogle Scholar
  37. 37.
    K. Nakayama and D.Y. Loh. No requirement for p56lck in the antigen-stimulated clonal deletion ot thymocytes. Science 257:94 (1992).PubMedCrossRefGoogle Scholar
  38. 38.
    P.C. Orban, D. Chui, and J.D. Marth. Tissue-and site-specific DNA recombination in transgenic mice. Proc. Natl. Acad. Sci. USA 89:6861 (1992).PubMedCrossRefGoogle Scholar
  39. 39.
    R.T. Kubo, W. Born, J.W. Kappler, P. Marrack, and M. Pigeon. Characterization of a monoclonal antibody which detects all murine αβ T cell receptors. J. Immunol. 142:2736 (1989).PubMedGoogle Scholar
  40. 40.
    A.C. Chan, B.A. Irving, J.D. Fraser, and A. Weiss. The ζ chain is associated with a tyrosine kinase and upon T-cell antigen receptor stimulation associates with ZAP-70, a 70-kDa tyrosine phosphoprotein. Proc. Natl. Acad. Sci USA 88:9166 (1991).PubMedCrossRefGoogle Scholar
  41. 41.
    A.C. Chan, M. Iwashima, C.W. Turck, and A. Weiss. ZAP-70: A 70 kd protein-tyrosine kinase that associates with the TCR ζ chain. Cell 71:649 (1992).PubMedCrossRefGoogle Scholar
  42. 42.
    B. Schraven, H. Kirchgessner, B. Gaber, Y. Samstag, and S. Meuer. A functional complex is formed in human T lymphocytes between the protein tyrosine phosphastase CD45, the protein tyrosine kinase p56lck and pp32, a possible common substrate. Eur. J. Immunol. 21:2469 (1991).PubMedCrossRefGoogle Scholar
  43. 43.
    B. Schraven, A. Schirren, H. Kirchgessner, B. Siebert, and S.C. Meuer. Four CD45/P56lck associated phosphoproteins (pp29-pp32) undergo alterations in human T cell activation. Eur. J. Immunol. 22:1857 (1992).PubMedCrossRefGoogle Scholar
  44. 44.
    A. Takeda, J.J. Wu, and A.L. Maizel. Evidence for monomeric and dimeric forms of CD45 associated with a 30-kDa phosphorylated protein. J. Biol Chem. 267:16651 (1992).PubMedGoogle Scholar
  45. 45.
    P.S. Linsley and J.A. Ledbetter. The role of the CD28 receptor during T cell responses to antigen. Ann. Rev. Immunol. 11:191 (1993).CrossRefGoogle Scholar
  46. 46.
    D.L. Rosenstreich and S.B. Mizel. Signal requirements for T lymphocyte activation. I. Replacement of macrophage function with phorbol myristic acetate. J. Immunol. 123:1749 (1979).PubMedGoogle Scholar
  47. 47.
    M.K. Newell, L.J. Haughn, C.R. Maroun, and M.H. Julius. Death of mature T cells by separate ligation of CD4 and the T cell receptor for antigen. Nature 347:286 (1990).PubMedCrossRefGoogle Scholar
  48. 48.
    L. Haughn, S. Gratton, L. Caron, R.-P. Sekaly, A. Veillette, and M. Julius. Association of tyrosine kinase p56lck with CD4 inhibits the induction of growth through the αβ T-cell receptor. Nature 358:328 (1992).PubMedCrossRefGoogle Scholar
  49. 49.
    E. Shivnan, M. Biffen, M. Shiroo, E. Pratt, M. Glennie, and D. Alexander. Does co-aggregation of the CD45 and CD3 antigens inhibit T cell antigen receptor complex-mediated activation of phospholipase C and protein kinase C? Eur. J. Immunol. 22:1055 (1992).PubMedCrossRefGoogle Scholar
  50. 50.
    N. Glaichenhaus, N. Shastri, D.R. Littman, and J.M. Turner. Requirement for association of p56lck with CD4 in antigen-specific signal transduction in T cells. Cell 64:511 (1991).PubMedCrossRefGoogle Scholar
  51. 51.
    K. Eichmann, J.I. Jonsson, I. Falk, and F. Emmrich. Effective activation of resting mouse T lymphocytes by cross-linking submitogenic concentrations of the T cell antigen receptor with either Lyt-2 or L3T4. Eur. J. Immunol. 17:643 (1987).PubMedCrossRefGoogle Scholar
  52. 52.
    T. Owens, d.S.G.B. Fazekas, and J.F.A.P. Miller. Coaggregation of the T-cell receptor with CD4 and other T-cell surface molecules enhances T-cell activation. Proc. Natl. Acad. Sci. USA 84:9209 (1987).PubMedCrossRefGoogle Scholar
  53. 53.
    T.L. Collins, S. Uniyal, J. Shin, J.L. Strominger, R.S. Mittler, and S J. Burakoff. p56lck association with CD4 is required for the interaction between CD4 and the TCR/CD3 complex and for optimal antigen stimulation. J. Immunol. 148:2159 (1992).PubMedGoogle Scholar
  54. 54.
    S. Volarevic, B.B. Niklinska, C.M. Burns, C.H. June, A.M. Weissman, and J.D. Ashwell. Regulation of TCR signaling by CD45 lacking transmembrane and extracellular domains. Science 260:541 (1993).PubMedCrossRefGoogle Scholar
  55. 55.
    R.R. Hovis, J.A. Donovan, M.A. Musci, D.G. Motto, F.D. Goldman, S.E. Ross, and G.A. Koretzky. Rescue of signaling by a chimeric protein containing the cytoplasmic domain of CD45. Science 260:544 (1993).PubMedCrossRefGoogle Scholar
  56. 56.
    T. Chiba, Y. Nagata, M. Machide, A. Kishi, H. Amanuma, M. Sugiyama, and K. Todokoro. Tyrosine kinase activation through the extracellular domains of cytokine receptors. Nature 362:646 (1993).PubMedCrossRefGoogle Scholar
  57. 57.
    T.R. Hurley, K. Luo, and B.M. Sefton. Activators of protein kinase C induce dissociation of CD4, but not CD8, from p56lck. Science 245, 407–409 (1989).PubMedCrossRefGoogle Scholar
  58. 58.
    J.D. Marth, R. Peet, E.G. Krebs, and R.M. Perlmutter. A lymphocyte-specific protein tyrosine kinase gene is rearranged and overexpressed in the murine T cell lymphoma LSTRA. Cell 43:393 (1985).PubMedCrossRefGoogle Scholar
  59. 59.
    J.D. Marth, D.B. Lewis, C.B. Wilson, M.E. Gearn, E.G. Krebs, and R.M. Perlmutter. Regulation of pp56lck during T-cell activation: functional implications for the src-like protein tyrosine kinases. EMBO J. 9:2727 (1987).Google Scholar
  60. 60.
    W. Swat, L. Ignatowicz, and P. Kisielow. Detection of apoptosis of immature CD4+8+ thymocytes by flow cytometry. J. Immunol. Methods 137:79 (1991).PubMedCrossRefGoogle Scholar
  61. 61.
    W. Swat, L. Ignatowicz, H. von Boehmer, and P. Kisielow. Clonal deletion of immature CD4+8+ thymocytes in suspension culture by extrathymic antigen-presenting cells. Nature 351:150 (1991).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Jamey D. Marth
    • 1
  • Christopher J. Ong
    • 1
  • Daniel Chui
    • 1
  1. 1.The Biomedical Research Centre and the Department of Medical Genetics, 2222 Health Sciences MallUniversity of British ColumbiaVancouverCanada

Personalised recommendations