Nonreceptor Tyrosine Kinases in Aggregation-Mediated Cell Activation

  • Brian Seed
  • Waldemar Kolanus
  • Charles Romeo
  • Ramnik Xavier
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 365)

Abstract

Many of the cellular recognition events in the immune system which are mediated by cell surface receptors are initiated by cell-cell contacts which result in receptor aggregation. Almost universally, the relevant receptors lack intrinsic enzymatic activity. However a growing body of evidence suggests that tyrosine phosphorylation is an early concomitant of cellular activation initiated by aggregation of cell surface receptors, and in some cases a causal role for tyrosine kinases in the activation process can be identified.

Keywords

Tyrosine Phosphorylation Antigen Receptor Nonreceptor Tyrosine Kinase Cell Antigen Receptor Zeta Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    June, C.H., M.C. Fletcher, J.A. Ledbetter, G.L. Schieven, J.N. Siegel, A.F. Phillips, and L.E. Samelson, Inhibition of tyrosine phosphorylation prevents T-cell receptor-mediated signal transduction, Proc. Natl Acad. Sci. USA 87:7722 (1990).PubMedCrossRefGoogle Scholar
  2. 2.
    Lane, P.J., J.A. Ledbetter, F.M. McConnell, K. Draves, J. Deans, G.L. Schieven, and E.A. Clark, The role of tyrosine phosphorylation in signal transduction through surface Ig in human B cells. Inhibition of tyrosine phosphorylation prevents intracellular calcium release, J. Immunol. 146:715 (1991).PubMedGoogle Scholar
  3. 3.
    Mustelin, T., K.M. Coggeshall, N. Isakov, and A. Altman, T cell antigen receptor-mediated activation of phospholipase C requires tyrosine phosphorylation, Science 247:1584 (1990).PubMedCrossRefGoogle Scholar
  4. 4.
    Stanley, J.B., R. Gorczynski, C.K. Huang, J. Love, and G.B. Mills, Tyrosine phosphorylation is an obligatory event in IL-2 secretion, J. Immunol. 145:2189 (1990).PubMedGoogle Scholar
  5. 5.
    Gold, M.R., D.A. Law, and A.L. DeFranco, Stimulation of protein tyrosine phosphorylation by the B-lymphocyte antigen receptor, Nature 345:810 (1990).PubMedCrossRefGoogle Scholar
  6. 6.
    Campbell, M.A., and B.M. Sefton, Protein tyrosine phosphorylation is induced in murine B lymphocytes in response to stimulation with anti-immunoglobulin, EMBO J. 9:2125 (1990).PubMedGoogle Scholar
  7. 7.
    June, C.H., M.C. Fletcher, J.A. Ledbetter, and L.E. Samelson, Increases in tyrosine phosphorylation are detectable before phospholipase C activation after T cell receptor stimulation, J. Immunol. 144:1591 (1990).PubMedGoogle Scholar
  8. 8.
    Eiseman, E., and J.B. Bolen, Engagement of the high-affinity IgE receptor activates src protein-related tyrosine kinases, Nature 355:78 (1992).PubMedCrossRefGoogle Scholar
  9. 9.
    Li, W., G.G. Deanin, B. Margolis, J. Schlessinger, and J.M. Oliver, Fc epsilon R1-mediated tyrosine phosphorylation of multiple proteins, including phospholipase C gamma 1 and the receptor beta gamma 2 complex, in RBL-2H3 rat basophilic leukemia cells, Mol. Cell Biol. 12:3176 (1992).PubMedGoogle Scholar
  10. 10.
    Carter, R.H., D.J. Park, S.G. Rhee, and D.T. Fearon, Tyrosine phosphorylation of phospholipase C induced by membrane immunoglobulin in B lymphocytes, Proc. Natl. Acad. Sci. USA 88:2745 (1991).PubMedCrossRefGoogle Scholar
  11. 11.
    Park, D.J., H.W. Rho, and S.G. Rhee, CD3 stimulation causes phosphorylation of phospholipase C-gamma 1 on serine and tyrosine residues in a human T-cell line, Proc. Natl. Acad. Sci. USA 88:5453 (1991).PubMedCrossRefGoogle Scholar
  12. 12.
    Park, D.J., H.K. Min, and S.G. Rhee, IgE-induced tyrosine phosphorylation of phospholipase C-gamma 1 in rat basophilic leukemia cells, J. Biol. Chem. 266:24237 (1991).PubMedGoogle Scholar
  13. 13.
    Secrist, J.P., L.A. Burns, L. Karnitz, G.A. Koretzky, and R.T. Abraham, Stimulatory effects of the protein tyrosine phosphatase inhibitor, pervanadate, on T-cell activation events, J. Biol Chem. 268:5886 (1993).PubMedGoogle Scholar
  14. 14.
    Weiss, A., G. Koretzky, R.C. Schatzman, and T. Kadlecek, Functional activation of the T-cell antigen receptor induces tyrosine phosphorylation of phospholipase C-gamma 1, Proc. Natl Acad. Sci. USA 88:5484 (1991).PubMedCrossRefGoogle Scholar
  15. 15.
    Nishibe, S., M.I. Wahl, S.M. Hernandez-Sotomayor, N.K. Tonks, S.G. Rhee, and G. Carpenter, Increase of the catalytic activity of phospholipase C-gamma 1 by tyrosine phosphorylation, Science 250:1253 (1990).PubMedCrossRefGoogle Scholar
  16. 16.
    Irving, B.A., and A. Weiss, The cytoplasmic domain of the T cell receptor zeta chain is sufficient to couple to receptor-associated signal transduction pathways, Cell 64:891 (1991).PubMedCrossRefGoogle Scholar
  17. 17.
    Kolanus, W., C. Romeo, and B. Seed, Lineage-independent activation of immune system effector function by myeloid Fc receptors, EMBO J. 11:4861 (1992).PubMedGoogle Scholar
  18. 18.
    Letourneur, F. and R.D. Klausner, Activation of T cells by a tyrosine kinase activation domain in the cytoplasmic tail of CD3ϵ, Science 255:79 (1992).PubMedCrossRefGoogle Scholar
  19. 19.
    Letourneur, F., and R.D. Klausner, T-cell and basophil activation through the cytoplasmic tail of T-cell-receptor zeta family proteins, Proc. Natl Acad. Sci. USA 88:8905 (1991).PubMedCrossRefGoogle Scholar
  20. 20.
    Romeo, C. and B. Seed, Cellular immunity to HIV activated by CD4 fused to T cell or Fc receptor polypeptides, Cell 64:1037 (1991).PubMedCrossRefGoogle Scholar
  21. 21.
    Wegener, A.-M.K., F. Letourneur, A. Hoeveler, T. Brocker, F. Luton, and B. Malissen, The T cell receptor/CD3 complex is composed of at least two autonomous transduction molecules, Cell 68:83 (1992).PubMedCrossRefGoogle Scholar
  22. 22.
    Reth, M, Antigen receptor tail clue, Nature 338:383 (1989).PubMedCrossRefGoogle Scholar
  23. 23.
    Romeo, C., M. Amiot, and B. Seed, Sequence requirements for induction of cytolysis by the T cell antigen/Fc receptor zeta chain, Cell 68:889 (1992).PubMedCrossRefGoogle Scholar
  24. 24.
    Irving, B.A., A.C. Chan, and A. Weiss, Functional characterization of a signal transducing motif present in the T cell antigen receptor zeta chain, J. Exp. Med. 177:1093 (1993).PubMedCrossRefGoogle Scholar
  25. 25.
    Kolanus, W., C. Romeo, and B. Seed, T cell activation by clustered tyrosine kinases, Cell 74:171 (1993).PubMedCrossRefGoogle Scholar
  26. 26.
    Koga, Y., N. Caccia, B. Toyonaga, R. Spolski, Y. Yanagi, Y. Yoshikai, and T.W. Mak, A human T cell-specific cDNA clone (YT16) encodes a protein with extensive homology to a family of protein-tyrosine kinases, Eur. J. Immunol. 16:1643 (1986).PubMedCrossRefGoogle Scholar
  27. 27.
    Cooke, M.P., and R.M. Perlmutter, Expression of a novel form of the fyn proto-oncogene in hematopoietic cells, New Biol. 1:66 (1989).PubMedGoogle Scholar
  28. 28.
    Taniguchi, T., T. Kobayashi, J. Kondo, K. Takahashi, H. Nakamura, J. Suzuki, K. Nagai, T. Yamada, S. Nakamura, and H. Yamamura, Molecular cloning of a porcine gene syk that encodes a 72-kDa protein-tvrosine kinase showing high susceptibility to proteolysis, J. Biol Chem. 266:15790 (1991).PubMedGoogle Scholar
  29. 29.
    Chan, A.C., M. Iwashima, C.W. Turck, and A. Weiss, ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCR zeta chain, Cell 71:649 (1992).PubMedCrossRefGoogle Scholar
  30. 30.
    Shen, L., R.F. Graziano, and M.W. Fanger, The functional properties of Fc gamma RI, II and III on myeloid cells: a comparative study of killing of erythrocytes and tumor cells mediated through the different Fc receptors, Mol. Immunol. 26:959 (1989).PubMedCrossRefGoogle Scholar
  31. 31.
    Bolen, J.B., P.A. Thompson, E. Eiseman, and I.D. Horak, Expression and interactions of the Src family of tyrosine protein kinases in T lymphocytes, Adv Cancer Res. 57:103 (1991).PubMedCrossRefGoogle Scholar
  32. 32.
    Burkhardt, A.L., M. Brunswick, J.B. Bolen, and J.J. Mond, Anti-immunoglobulin stimulation of B lymphocytes activates src-related protein-tyrosine kinases, Proc. Natl. Acad. Sci. USA 88:7410 (1991).PubMedCrossRefGoogle Scholar
  33. 33.
    Hutchcroft, J.E., R.L. Geahlen, G.G. Deanin, and J.M. Oliver, Fc epsilon RI-mediated tyrosine phosphorylation and activation of the 72-kDa protein-tyrosine kinase, P-TK72, in RBL-2H3 rat tumor mast cells, Proc. Nail. Acad. Sci. USA 89:9107 (1992).CrossRefGoogle Scholar
  34. 34.
    Tsygankov, A.Y., B.M. Broker, J. Fargnoli, J.A. Ledbetter, and J.B. Bolen, Activation of tyrosine kinase p60fyn following T cell antigen receptor cross-linking, J. Biol. Chem. 267:18259 (1992).PubMedGoogle Scholar
  35. 35.
    Wong, S., A.B. Reynolds, and J. Papkoff, Platelet activation leads to increased c-src kinase activity and association of c-src with an 85-kDa tyrosine phosphoprotein, Oncogene 7:2407 (1992).PubMedGoogle Scholar
  36. 36.
    Appleby, M.W., J.A. Gross, M.P. Cooke, S.D. Levin, X. Qian, and R.M. Perlmutter, Defective T cell receptor signaling in mice lacking the thymic isoform of p59fyn, Cell 70:751 (1992).PubMedCrossRefGoogle Scholar
  37. 37.
    Karnitz, L., S.L. Sutor, T. Torigoe, J.C. Reed, M.P. Bell, D.J. McKean, P.J. Leibson, and R.T. Abraham, Effects of p56lck deficiency on the growth and cytolytic effector function of an interleukin-2-dependent cytotoxic T-cell line, Mol. Cell Biol. 12:4521 (1992).PubMedGoogle Scholar
  38. 38.
    Stein, P.L., H.M. Lee, S. Rich, and P. Soriano, pp59fyn mutant mice display differential signaling in thymocytes and peripheral T cells, Cell 70:741 (1992).PubMedCrossRefGoogle Scholar
  39. 39.
    Straus, D.B., and A. Weiss, Genetic evidence for the involvement of the ick tyrosine kinase in signal transduction through the T cell antigen receptor, Cell 70:585 (1992).PubMedCrossRefGoogle Scholar
  40. 40.
    Bell, G.M., J.B. Bolen, and J.B. Imboden, Association of Src-like protein tyrosine kinases with the CD2 cell surface molecule in rat T lymphocytes and natural killer cells, Mol. Cell Biol. 12:5548 (1992).PubMedGoogle Scholar
  41. 41.
    Sugie, K., T. Kawakami, Y. Maeda, T. Kawabe, A. Uchida, and J. Yodoi, Fyn tyrosine kinase associated with Fc epsilon RII/CD23: possible multiple roles in lymphocyte activation, Proc. Natl. Acad. Sci. USA 88:9132 (1991).PubMedCrossRefGoogle Scholar
  42. 42.
    Huang, M.M., Z. Indik, L.F. Brass, J.A. Hoxie, A.D. Schreiber, and J.S. Brugge, Activation of Fc gamma RII induces tyrosine phosphorylation of multiple proteins including Fc gamma RII, J. Biol. Chem. 267:5467 (1992).PubMedGoogle Scholar
  43. 43.
    Hatakeyama, M., T. Kono, N. Kobayashi, A. Kawahara, S.D. Levin, R.M. Perlmutter, and T. Taniguchi, Interaction of the IL-2 receptor with the src-family kinase p561ck: identification of novel intermolecular association, Science 252:1523 (1991).PubMedCrossRefGoogle Scholar
  44. 44.
    Stefanova, L, V. Horejsi, I.J. Ansotegui, W. Knapp, and H. Stockinger, GPI-anchored cell-surface molecules complexed to protein tyrosine kinases, Science 254:1016 (1991).PubMedCrossRefGoogle Scholar
  45. 45.
    Thomas, P.M., and L.E. Samelson, The glycophosphatidylinositol-anchored Thy-1 molecule interacts with the p60fyn protein tyrosine kinase in T cells, J. Biol. Chem. 267:12317 (1992).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Brian Seed
    • 1
  • Waldemar Kolanus
    • 1
  • Charles Romeo
    • 1
  • Ramnik Xavier
    • 1
  1. 1.Department of Molecular BiologyMassachusetts General HospitalBostonUSA

Personalised recommendations