Perturbation Theory for Systems without Global Action-Angle Coordinates

  • Francesco Fassò
Part of the NATO ASI Series book series (NSSB, volume 331)

Abstract

Hamiltonian perturbation theory is usually formulated with reference to systems defined in a product space B × T m endowed with a system of action-angle coordinates IB,φ ∈ T m , where B is an open set in R m . This is essentially a ‘local’ formulation since the phase space of an integrable Hamiltonian system can easily fail to have such a product structure in the large, and correspondingly there exists no single ‘global’ system of action-angle coordinates.

Keywords

Normal Form Action Space Hamilton Function Invariant Tori Integrable Hamiltonian System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andoyer, H., 1923, Cours de Mécanique Céleste, Gauthier-Villars, Paris.MATHGoogle Scholar
  2. Arnold, V.I., 1976, Méthodes Mathématiques de la Mécanique Classique, MIR, Moscow.MATHGoogle Scholar
  3. Benettin, G., and Fassò, F., 1993, Paper in preparation.Google Scholar
  4. Coffey, S.L., Deprit, A., and Miller, B.R., 1986, The critical inclination in artificial satellite theory, Cel. Mech. 39:365.CrossRefMATHMathSciNetADSGoogle Scholar
  5. Cushman, R., 1983, Geometry of the energy momentum mapping of the spherical pendulum, Centrum voor Wiskunde en Informatica Newsletter 1:4.MathSciNetGoogle Scholar
  6. Cushman, R., 1984, Normal form for hamiltonian vectorfields with periodic flow, in Differential Geometric Methods in Mathematical Physics, S. Sternberg ed., Reidel, Dordrecht.Google Scholar
  7. Cushman, R., and Knörrer, H., 1985, The energy-momentum mapping of the Lagrange top, in Differential Geometric Methods in Mathematical Physics, H.D. Doebner and J.D. Henning eds., Lect. Notes Math. No. 1139, Springer Verlag, Berlin.Google Scholar
  8. Dazord P., and Delzant T., 1987, Le problème general des variables actions-angles, J. Diff. Geom. 26:223.MATHMathSciNetGoogle Scholar
  9. Deprit, A., 1967, Free rotation of a rigid body studied in phase plane, Am. J. Phys. 55:424.CrossRefADSGoogle Scholar
  10. Duistermaat, J.J., 1980, On global action-angle coordinates, Commun. Pure Appl. Math. 33:687.CrossRefMATHMathSciNetGoogle Scholar
  11. Fassò, F., 1991, Fast Rotations of the Rigid Body and Hamiltonian Perturbation Theory. Ph.D. Thesis, SISSA, Trieste.Google Scholar
  12. Fassò, F., 1993, Geometry of the symmetric Euler-Poinsot system and Hamiltonian perturbation theory on a manifold. Preprint, University of Trento.Google Scholar
  13. Nekhoroshev, N.N., 1972, Action-angle variables and their generalizations. Trudy Moskov. Mat. Obsc. 26:181.MATHMathSciNetGoogle Scholar
  14. Nekhoroshev, N.N., 1977, An exponential estimate of the time of stability of nearly integrable Hamiltonian systems. Usp. Math. Nauk. 32:5.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Francesco Fassò
    • 1
  1. 1.Dipartimento di Matematica dell’ UniversitàTrentoItaly

Personalised recommendations