The Adrenal Renin/Angiotensin System

  • G. P. Vinson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 377)

Abstract

In mammals, the adrenals are paired glands lying anterior to the kidney, having a combined wet weight approximately 0.1%–0.2% of the total body weight. Histologically, the cells of the outer part of the gland, the cortex, which entirely surround the inner medulla, are arranged as three major layers, or zones, organized as concentric shells. These are the zonae glomerulosa, fasciculata and reticularis. The cells of the different zones are generally distinguished by their shape and size, as well as by their arrangement and disposition within the gland. In general, the cells of the glomerulosa, which lies beneath the connective tissue capsule, consists of an arrangment of cells variously described as loops, whorls or baskets. The larger, and more numerous, cells of the zona fasciculata are invariably arranged as centripetally oriented cords, which abut on to the less clearly organised network of cells which form the zona reticularis. The reticularis adjoins the central medulla (Vinson et al. 1992).

Keywords

Adrenal Cortex Zona Glomerulosa Renin Gene Expression Adrenal Glomerulosa Cell Adrenal Zona Glomerulosa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilera G, Hauger RL and Catt KJ. Control of aldosterone secretion during sodium restriction: adrenal receptor regulation and increased adrenal sensitivity to angiotensin II. Proc.Natl.Acad.Sci.USA 1978; 75: 975–979.PubMedCrossRefGoogle Scholar
  2. Aguilera G and Catt KJ. Regulation of aldosterone secretion during altered sodium intake. J.Steroid.Biochem. 1983; 19: 525–530.PubMedCrossRefGoogle Scholar
  3. Aiyar N, Griffin E, Edwards R, Weinstock J, Samanen J and Nambi P. Characterization of bovine ovary angiotensin II receptors using subtype-selective antagonists. Pharmacology. 1993; 46: 1–8.PubMedCrossRefGoogle Scholar
  4. Baba K, Yamaguchi T, Nakashima H, Doi Y and Hashiba K. Evidence of activator of inactive renin to active renin in adrenal zona glomerulosa cells. Japanese Circulation Journal-English Edition 1988; 52: 910.Google Scholar
  5. Baba K, Doi Y, Yamaguchi T, Yano K and Hashiba K. Production of active and inactive renin by adrenal explant cultures and the existence of a prorenin activating enzyme in the adrenal gland. Jpn.Heart J. 1992; 33: 465–476.PubMedCrossRefGoogle Scholar
  6. Bader M, Zhao Y, Sander M, et al. Role of tissue renin in the pathophysiology of hypertension in TGR(mREN2)27 rats. Hypertension. 1992; 19: 681–686.PubMedCrossRefGoogle Scholar
  7. Balla T, Baukal AJ, Guillemette G, Morgan RO and Catt KJ. Angiotensin-stimulated production of inositol trisphosphate isomers and rapid metabolism through inositol 4-monophosphate in adrenal glomerulosa cells. Proc.Natl.Acad.Sci.U.S.A. 1986; 83: 9323–9327.PubMedCrossRefGoogle Scholar
  8. Balla T, Baukal AJ, Eng S and Catt KJ. Angiotensin II receptor subtypes and biological responses in the adrenal cortex and medulla. Mol.Pharmacol. 1991; 40: 401–406.PubMedGoogle Scholar
  9. Beresford MJ and Fitzsimons JT. Intracerebroventricular angiotensin II-induced thirst and sodium appetite in rat are blocked by the AT1 receptor antogonist, Losartan (DuP 753), but not by the AT2 antagonist, CGP 42112B. Exp.Physiol. 1992; 77: 761–764.PubMedGoogle Scholar
  10. Bergsma DJ, Ellis C, Kumar C, et al. Cloning and characterisation of a human angiotensin II type 1 receptor. Biochem.Biophys.Res.Comm. 1992; 183: 989–995.PubMedCrossRefGoogle Scholar
  11. Bird IM, Meikle I, Williams BC and Walker SW. Angiotensin II-stimulated cortisol secretion is mediated by a hormone-sensitive phospholipase C in bovine adrenal fasciculata/reticularis cells. Mol.Cell Endocrinol. 1989; 64: 45–53.PubMedCrossRefGoogle Scholar
  12. Bird IM, Magness RR, Mason JI and Rainey WE. Angiotensin-II acts via the type 1 receptor to inhibit 17α-hydroxylase cytochrome P450 expression in ovine adrenocortical cells. Endocrinology 1992; 130: 3113–21.IS.PubMedCrossRefGoogle Scholar
  13. Blair-West JR, Coghlan JP, Denton DA, et al. Humoral Stimulation of adrenocortical secretion. J.Clin.Invest. 1962; 41: 1606–1627.PubMedCrossRefGoogle Scholar
  14. Bottari SP, Taylor V, King IN, Bogdal Y, Whitebread S and de Gasparo M. Angiotensin II AT2 receptors do not interact with guanine nucleotide binding proteins. Eur.J.Pharmacol. 1991; 207: 157–163.PubMedCrossRefGoogle Scholar
  15. Braley L, Menachery A, Brown E and Williams G. The effects of extracellular K+ land angiotensin II on cytosolic Ca++ and steroidogenesis in adrenal glomerulosa cells. Biochem.Biophys.Res.Commun. 1984; 123: 810–815.PubMedCrossRefGoogle Scholar
  16. Braverman B and Davis JO. Adrenal steroid secretion in the rabbit: sodium depletion, angiotensin II and ACTH. Am.J.Physiol. 1973; 225: 1306–1310.PubMedGoogle Scholar
  17. Brecher AS, Shier DN, Dene H, et al. Regulation of adrenal renin messenger ribonucleic acid by dietary sodium chloride. Endocrinology. 1989; 124: 2907–2913.PubMedCrossRefGoogle Scholar
  18. Brechler V, Jones PW, Levens NR, de Gasparo M and Bottari SP. Agonistic and antagonistic properties of angiotensin analogs at the AT2 receptor in PC12W cells. Regulatory Peptides 1993; 44: 207–213.PubMedCrossRefGoogle Scholar
  19. Brunswig-Spickenheier B and Mukhopadhyay AK. Characterization of angiotensin-II receptor subtype on bovine thecal cells and its regulation by luteinizing hormone. Endocrinology 1992; 131: 1445–1452.PubMedCrossRefGoogle Scholar
  20. Campbell DJ and Habener JF. Hybridisation in situ studies of angiotensinogen gene expression in rat adrenal and lung. Endocrinology 1989; 124: 218–222.PubMedCrossRefGoogle Scholar
  21. Catt KJ, Balla T, Baukal AJ, Hausdorff WP and Aguilera G. Control of glomerulosa cell function by angiotensin. Clin.Exp.Pharmacol.Physiol. 1988; 15: 501–515.PubMedCrossRefGoogle Scholar
  22. Chaki S and Inagami T. Identification and characterisation of a new binding site for angiotensin II in mouse neuroblastoma neuro-2A-cells. Biochem.Biophys.Res.Comm. 1992; 182: 388–380.PubMedCrossRefGoogle Scholar
  23. Chang RS and Lotti VJ. Two distinct angiotensin II receptor binding sites in rat adrenal revealed by new selective nonpeptide ligands. Mol.Pharmacol. 1990; 37: 347–351.PubMedGoogle Scholar
  24. Cooney AS and Fitzsimons JT. The effect of the putative AT2 antagonist, p-aminophenylalanine6 angiotensin II, on thirst and sodium appetite in rats. Exp.Physiol. 1993; 78: 767–774.PubMedGoogle Scholar
  25. Deschepper CF, Mellon SH, Cumin F, Baxter JD and Ganong WF. Analysis by immunocytochemistry and in situ hybridization of renin and its mRNA in kidney, testis, adrenal, and pituitary of the rat. Proc.Natl.Acad.Sci., USA 1986; 83: 7552–7556.PubMedCrossRefGoogle Scholar
  26. Doi Y, Atarashi K, Franco-Saenz R and Mulrow PJ. Adrenal renin: a possible regulator of aldosterone production. Clin.Expt.Hypertens. 1983; [A] 5: 1119–1126.Google Scholar
  27. Doi Y, Baba K, Yamaguchi T, Hashiba K and Mulrow PJ. Evidence of release and production of inactive renin from adrenal zona glomerulosa cells. Journal Of Hypertension 1986; 4: S6.Google Scholar
  28. Douglas J, Aguilera G, Kondo T and Catt KJ. Angiotensin II receptors and aldosterone production in rat adrenal glomerulosa cells. Endocrinology 1978; 102: 685–696.PubMedCrossRefGoogle Scholar
  29. Douglas JG, Brown GP and White C. Angiotensin II receptors of human and primate adrenal fasciculata and glomerulosa: correlations of binding and steroidogenesis. Metabolism 1984; 33: 685–688.PubMedCrossRefGoogle Scholar
  30. Dzau VJ, Ellison KE, Brody T, Ingelfinger J and Pratt RE. A comparative study of the distributions of renin and angiotensinogen messenger ribonucleic acids in rat and mouse tissues. Endocrinology 1987; 120: 2334–2338.PubMedCrossRefGoogle Scholar
  31. Dzau VJ. Tissue renin-angiotensin system in myocardial hypertrophy and failure. Arch.Intern.Med. 1993; 153: 937–942.PubMedCrossRefGoogle Scholar
  32. Fallo F, Pistorello M, Pedini F, D’Agostino D, Mantero F and Boscaro M. In vitro evidence for local generation of renin and angiotensin II/III immunoreactivity by the human adrenal gland. Acta Endocrinol.Copenh. 1991; 125: 319–330.PubMedGoogle Scholar
  33. Finn FM, Stehle C, Ricci P and Hofmann K. Angiotensin stimulation of adrenal fasciculata cells. Arch.Biochem.Biophys. 1988; 264: 160–167.PubMedCrossRefGoogle Scholar
  34. Fitzsimons JT. Thirst. Physiol.Rev. 1972; 52: 468–561.Google Scholar
  35. Ganong WF, Mulrow PJ, Boryczka A and Cera G. Evidence for a direct effect of angiotensin II on adrenal cortex of the dog. Proc.Soc.Exp.Biol.Med. 1962; 109: 381–384.PubMedCrossRefGoogle Scholar
  36. Ganten D, Ganten U, Kubo S, et al. Influence of sodium, potassium, and pituitary hormones on iso-renin in rat adrenal glands. Am.J.Physiol. 1974; 227: 224–229.PubMedGoogle Scholar
  37. Granzer E. Uber die wirkung von hormonextracten des hypophysenhinterlappens auf die serumproteinzusammensetzung sowie ihre beziehungen zum renin. Naturwiss. 1952; 39: 405.CrossRefGoogle Scholar
  38. Gross F. Renin und hypertensin, physiologische oder pathologische Wirkstoffe? Klinische Wochenschrift 1958; 36: 693–706.PubMedCrossRefGoogle Scholar
  39. Gupta P, Franco Saenz R and Mulrow PJ. Regulation of the adrenal renin angiotensin system in cultured bovine zona glomerulosa cells: effect of catecholamines. Endocrinology. 1992; 130: 2129–2134.PubMedCrossRefGoogle Scholar
  40. Hackenthal E, Hackenthal R and Hilgenfeld U. Purification and partial characterisation of rat brain acid proteinase (isorenin). Biochem.Biophys.Acta 1952; 522: 561.Google Scholar
  41. Hajnoczky G, Csordas G, Bago A, Chiu AT and SpáŠát A. Angiotensin II exerts its effect on aldosterone production and potassium permeability through receptor subtype AT1 in rat adrenal glomerulosa cells. Biochem.Pharmacol. 1992; 43: 1009–1012.PubMedCrossRefGoogle Scholar
  42. Hayduk K, Boucher R and Genest J. Renin activity content in various tissues of dogs under different physiological states. Proc.Soc.Exp.Biol.Med. 1970; 134: 352.Google Scholar
  43. Hinson JP, Vinson GP and Whitehouse BJ. Effects of dietary sodium restriction on peptide stimulation of aldosterone secretion by the isolated perfused rat adrenal gland in situ: a report of exceptional sensitivity to angiotensin II amide. J.Endocrinol. 1988; 119: 83–88.PubMedCrossRefGoogle Scholar
  44. Holmer S, Eckardt K, Lehir M, Schricker K, Riegger G and Kurtz A. Influence of dietary NaCl intake on renin gene-expression in the kidneys and adrenal-glands of rats. Pflügers Archiv-European Journal Of Physiology 1993; 425: 62–67.PubMedCrossRefGoogle Scholar
  45. Hu HY, Mokuda O, Sakamoto Y and Shimizu N. Direct effect of acth on renin release in isolated perfused guinea-pig kidneys with adrenal-glands. Acta Endocrinologica 1992; 127: 142–145.PubMedGoogle Scholar
  46. Husain A, DeSilva P, Speth RC and Bumpus FM. Regulation of angiotensin II in rat adrenal gland. Circ.Res. 1987; 60: 640–648.PubMedCrossRefGoogle Scholar
  47. Inagami T, Mizuno K, Naruse M, et al. Active and inactive renin in the adrenal. Am.J.Hypertens. 1989; 2: 311–319.PubMedGoogle Scholar
  48. Ingelfinger JR, Sigmund C, Mullins JJ, Gross KW and Dzau VJ. Adrenal renin gene-regulation using transgenic mice. Clinical Research 1989; 37: Jarvis MF, Gessner GW and Ly CQ. The angiotensin hexapeptide 3-8 fragment potently inhibits [125I]angiotensin II binding to non-AT1 or-AT2 recognition sites in bovine adrenal cortex. Eur.J.Pharmacol. 1992; 219: 319–322.Google Scholar
  49. Jimenez E, Marsigliante S, Barker S, Hinson JP and Vinson GP. Multiple forms of angiotensin II receptors in rat tissues. J.mol.endocr. 1991; 7: 21–26.CrossRefGoogle Scholar
  50. Jimenez E Kambayashi Y, Bardhan S, Takahashi, et al. Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition. J.Biol.Chem. 1993; 268: 24543–24546.Google Scholar
  51. Kifor I, Moore TJ, Fallo F, et al. Potassium-stimulated angiotensin release from superfused adrenal capsules and enzymatically dispersed cells of the zona glomerulosa. Endocrinology. 1991a; 129: 823–831.PubMedCrossRefGoogle Scholar
  52. Kifor I, Moore TJ, Fallo F, et al. The effect of sodium intake on angiotensin content of the rat adrenal gland. Endocrinology. 1991b; 128: 1277–1284.PubMedCrossRefGoogle Scholar
  53. Kim S, Hosoi M, Shimamoto K, Takada T and Yamamoto K. Increased production of angiotensin II in the adrenal gland of stroke-prone spontaneously hypertensive rats with malignant hypertension. Biochem.Biophys.Res.Commun. 1991; 178: 151–157.PubMedCrossRefGoogle Scholar
  54. Kim S, Tokuyama M, Hosoi M and Yamamoto K. Adrenal and circulating renin-angiotensin system in stroke-prone hypertensive rats. Hypertension. 1992; 20: 280–291.PubMedCrossRefGoogle Scholar
  55. Klemm S, Pinet F, Rioual Caroff N, Tunny T, Corvol P and Gordon R. Detection of renin mRNA in aldosterone-producing adenomas by polymerase chain reaction. Clin.Exp.Pharmacol.Physiol. 1993; 20: 303–305.PubMedCrossRefGoogle Scholar
  56. Kojima I, Kojima K and Rasmussen H. Characteristics of angiotensin II-, K+-and ACTH-induced calcium influx in adrenal glomerulosa cells. Evidence that angiotensin II, K+, and ACTH may open a common calcium channel. J.Biol.Chem. 1985; 260: 9171–9176.PubMedGoogle Scholar
  57. Kon Y, Hashimoto Y, Kitagawa H, Sugimura M and Murakami K. Renin immunohistochemistry in the adrenal gland of the mouse fetus and neonate. Anat.Rec. 1990; 227: 124–131.PubMedCrossRefGoogle Scholar
  58. Kon Y, Hashimoto Y, Sugimura M and Murakami K. Adrenal renin is localized in lysosomal granules. Anatomia Histologia Embryologia-Journal Of Veterinary Medicine Series C-Zentralblatt Fur Veterinarmedizin Reihe C 1993; 22: 324–327.CrossRefGoogle Scholar
  59. Markowska A, Nussdorfer GG and Malendowicz LK. Proliferogenic effect of neurotensin (nt) and neuromedin-n (nmn) on the rat adrenal-cortex evidence that angiotensin-II mediates the effect of nmn, but not of nt. Neuropeptides 1994; 27: 91–94.PubMedCrossRefGoogle Scholar
  60. Mason PA, Fraser J, Morton JJ, Semple PF and Wilson A. The effect of angiotensin II infusion on plasma corticosteroid concentrations in normal man. J.Steroid.Biochem. 1976; 7: 859–861.PubMedCrossRefGoogle Scholar
  61. Melby JC. Angiotensin-converting enzyme in cardiovascular and adrenal tissues and implications for successful blood-pressure management. American Journal Of Cardiology 1992; 69: C 2–C 7.CrossRefGoogle Scholar
  62. Menachery A, Braley LM, Kifor I, Gleason R and Williams GH. Dissociation in plasma renin and adrenal ANG II and aldosterone responses to sodium restriction in rats. Am.J.Physiol. 1991; 261: E487–E494.PubMedGoogle Scholar
  63. Mizuno K. Renin in adrenal: an overview of its synthesis, subcellular localization, and functions. Fukushima.J.Med.Sci. 1991; 37: 41–57.PubMedGoogle Scholar
  64. Mizuno K, Fukuchi S and Inagami T. Distinct localization of renin and angiotensins in separate subcellular fractions of the rat adrenal cortex. Endocrinol. Jpn. 1991; 38: 655–660.PubMedCrossRefGoogle Scholar
  65. Montiel M, Barkers S, Vinson GP and Jimenez E. Angiotensin II receptor isoforms in the rat adrenal gland: studies with the selective subtype antagonists DuP 753 and CGP42112A. J.mol.endocr. 1993; 11: 69–75.CrossRefGoogle Scholar
  66. Mukhopadhyay AK. Tissue prorenin-renin-angiotensin systems: local regulatory roles in reproductive and endocrine organs. Regulatory Peptides 1994; 53: 133–135.CrossRefGoogle Scholar
  67. Mukoyama M, Nakajima M, Horiuchi M, Sasamura H, Pratt RE and Dzau VJ. Expression cloning of type 2 angiotensin II receptor reveals a unique class of seven-transmembrane receptors. J.Biol.Chem. 1993; 268: 24539–24542.PubMedGoogle Scholar
  68. Mulrow PJ. Adrenal renin: regulation and function. Front.Neuroendocrinol. 1992; 13: 47–60.PubMedGoogle Scholar
  69. Murphy TJ, Alexander RW, Griendling KK, Runge MS and Bernstein KE. Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature 1991; 351: 233–236.PubMedCrossRefGoogle Scholar
  70. Nakamaru M, Misono KS, Naruse M, Workman RJ and Inagami T. A role for the adrenal renin-angiotensin system in the regulation of potassium-stimulated aldosterone production. Endocrinology 1985; 117: 1772–1778.PubMedCrossRefGoogle Scholar
  71. Naruse M, Takii Y and Imagami T. Renin exists in high concentration in the adrenal of the rat. Biomed.Res. 1981; 2: 583.Google Scholar
  72. Naruse M and Inagami T. Markedly elevated specific renin level in the adrenal in genetically hypertensive rats. Proc.Natl.Acad.Sci., USA 1982; 79: 3295–3299.PubMedCrossRefGoogle Scholar
  73. Naruse M, Sussman CR, Naruse K and Jackson RV. Renin exists in human adrenal tissue. J.Clin.Endocrinol.Metab. 1983; 57: 482–487.PubMedCrossRefGoogle Scholar
  74. Naruse M, Naruse K, Inagaki T and Inagami T. Immunoreactive renin in mouse adrenal gland: localisation in the inner cortical region. Hypertension 1984; 6: 275–280.PubMedGoogle Scholar
  75. Oda H, Lotshaw DP, Franco Saenz R and Mulrow PJ. Local generation of angiotensin II as a mechanism of aldosterone secretion in rat adrenal capsules. Proc.Soc.Exp.Biol.Med. 1991; 196: 175–177.PubMedCrossRefGoogle Scholar
  76. Ogishima T, Suzuki H, Hata J, Mitani F and Ishimura Y. Zone-specific expression of aldosterone synthase cytochrome P-450 and cytochrome P-45011β in rat adrenal cortex: histochemical basis for the functional zonation. Endocrinology 1992; 130: 2971–27.IS.PubMedCrossRefGoogle Scholar
  77. Ohnishi J, Ishido M, Shibata T, Inagami T, Murakami K and Miyazaki H. The rat angiotensin II AT1A receptor couples with three different signal transduction pathways. Biochem.Biophys.Res.Commun. 1992; 186: 1094–1101.PubMedCrossRefGoogle Scholar
  78. Ouali R, Poulette S, Penhoat A and Saez JM. Characterisation and coupling of angiotensin-II receptor subtypes in cultured bovine adrenal fasciculata cells. J.Steroid Biochem. 1992; 43: 271–280.CrossRefGoogle Scholar
  79. Peters J, Munter K, Bader M, Hackenthal E, Mullins JJ and Ganten D. Increased adrenal renin in transgenic hypertensive rats, TGR(mREN2)27, and its regulation by cAMP, angiotensin II, and calcium. J.Clin.Invest. 1993; 91: 742–747.PubMedCrossRefGoogle Scholar
  80. Peterson CM, Morioka N, Zhu C, Ryan JW and Lemaire WJ. Angiotensin-converting enzyme inhibitors have no effect on ovulation and ovarian steroidogenesis in the perfused rat ovary. Reprod.Toxicol. 1993a; 7: 131–135.PubMedCrossRefGoogle Scholar
  81. Peterson CM, Zhu C, Mukaida T, Butler TA, Woessner JF and Lemaire WJ. The angiotensin II antagonist saralasin inhibits ovulation in the perfused rat ovary. Am.J.Obstet.Gynecol. 1993b; 168: 242–245.PubMedCrossRefGoogle Scholar
  82. Phillips MI, Speakman EA and Kimura B. Levels of angiotensin and molecular biology of the tissue renin angiotensin systems. Regul.Pept. 1993; 43: 1–20.PubMedCrossRefGoogle Scholar
  83. Poisner AM, Suh HH, Poisner R, Hudson P and Hong JS. Stimulation of renin and prorenin release from adrenal-medullary cells by PGE2 and forskolin. Faseb Journal 1992; 6.Google Scholar
  84. Pucell AG, Hodges JC, Sen I, Bumpus FM and Husain A. Biochemical-properties of the ovarian granulosa-cell type-2-angiotensin-II receptor. Endocrinology 1991; 128: 1947–1959.PubMedCrossRefGoogle Scholar
  85. Racz K, Pinet F, Gase JM, Guyene TT and Corvol P. Coexpression of renin, angiotensinogen, and their messenger ribonucleic acids in adrenal tissues. J.Clin.Endocrinol.Metab. 1992; 75: 730–737.PubMedCrossRefGoogle Scholar
  86. Rebuffat P, Malendowicz LK, Kasprzak A, Mazzocchi G, Gottardo G and Nussdorfer GG. A coupled morphological and biochemical study on the cellular localisation of the intra-adrenal renin granules in rats. Cytobios. 1991; 68: 7–13.PubMedGoogle Scholar
  87. Robba C, Rebuffat P, Mazzocchi G and Nussdorfer GG. Long-term trophic effect of sodium restriction on the rat adrenal zona glomerulosa. 1. its partial independence of the renin-angiotensin system. Experimental And Clinical Endocrinology 1988; 91: 43–50.PubMedCrossRefGoogle Scholar
  88. Rossier MF, Capponi AM and Vallotton MB. Inositol trisphosphate isomers in angiotensin II-stimulated adrenal glomerulosa cells. Mol.Cell Endocrinol. 1988; 57: 163–168.PubMedCrossRefGoogle Scholar
  89. Ryan JW. Renin-like activity in the adrenal gland. Science 1967; 158: 1589–1590.PubMedCrossRefGoogle Scholar
  90. Sandberg K, Ji H, Clark AJL, Shapira H and Catt KJ. Cloning and expression of a novel angiotensin-ii receptor subtype. J.Biol.Chem. 1992; 267: 9455–9458.PubMedGoogle Scholar
  91. Sander M, Ganten D and Mellon SH. Role of adrenal renin in the regulation of adrenal steroidogenesis by corticotropin. Proc.Natl.Acad.Sci.U.S.A. 1994; 91: 148–152.PubMedCrossRefGoogle Scholar
  92. Sarzani R, Fallo F, Dessi Fulgheri P, et al. Local renin-angiotensin system in human adrenals and aldosteronomas. Hypertension. 1992; 19: 702–707.PubMedCrossRefGoogle Scholar
  93. Sasaki K, Yamano Y, Bardhan S, et al. Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type-1 receptor. Nature 1991; 351: 230–233.PubMedCrossRefGoogle Scholar
  94. Shier DN, Kusano E, Stoner GD, Franco Saenz R and Mulrow PJ. Production of renin, angiotensin II, and aldosterone by adrenal explant cultures: response to potassium and converting enzyme inhibition. Endocrinology. 1989; 125: 486–491.PubMedCrossRefGoogle Scholar
  95. Shionoiri H, Hirawa N, Ueda S, et al. Renin gene expression in the adrenal and kidney of patients with primary aldosteronism. J.Clin.Endocrinol.Metab. 1992a; 74: 103–107.PubMedCrossRefGoogle Scholar
  96. Shionoiri H, Hirawa N, Ueda SI, et al. Renin gene-expression in the adrenal and kidney of patients with primary aldosteronism. J. clin. Endocrinol. Metab. 1992b; 74: 103–107.PubMedCrossRefGoogle Scholar
  97. Smith RD, Chiu AT, Wong PC, Herblin WF and Timmermans PBMWM. Analysis of angiotensin-II receptor antagonists. Ann.Rev.Pharmacol. 1992; 58: 1883–1888.Google Scholar
  98. Song K, Shiota N, Okunishi H and Miyazaki M. Nephrectomy and a newly identified binding site for angiotensin II in the rat adrenal cortex. Life Sciences 1992; 51: 165–170.Google Scholar
  99. Speth RC and Husain A. Distribution of angiotensin-converting enzyme and angiotensin II-receptor binding sites in the rat ovary. Biol.Reprod. 1988; 38: 695–702.PubMedCrossRefGoogle Scholar
  100. Swartz SL, Williams GH, Hollenberg NK, Dluhy RG and Moore TJ. Primacy of the renin-angiotensin system in mediating the aldosterone response to sodium restriction. J.Clin.Endocrinol.Metab. 1980; 50: 1071–1074.PubMedCrossRefGoogle Scholar
  101. Tait JF and Tait SAS. Recent perspectives on the history of the adrenal cortex. J.Endocrinol. 1979; 83: 3P–24P.PubMedGoogle Scholar
  102. Timmermans PBMWM, Wong PC, Chui AT, et al. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol.Rev. 1993; 45: 205–251.PubMedGoogle Scholar
  103. Tokita Y, Yamaguchi T, Franco Saenz R, Mulrow PJ and Ganten D. Adrenal renin is released into the circulation of the hypertensive transgenic rat TGR (mRen-2)27. Trans.Assoc.Am.Physicians. 1992; 105: 123–132.PubMedGoogle Scholar
  104. Tokita Y, Franco Saenz R, Mulrow PJ and Ganten D. Effects of nephrectomy and adrenalectomy on the renin-angiotensin system of transgenic rats TGR(mRen2)27. Endocrinology. 1994a; 134: 253–257.PubMedCrossRefGoogle Scholar
  105. Tokita Y, Franco Saenz R, Reimann EM and Mulrow PJ. Hypertension in the transgenic rat TGR(mRen-2)27 may be due to enhanced kinetics of the reaction between mouse renin and rat angiotensinogen. Hypertension. 1994b; 23: 422–427.PubMedCrossRefGoogle Scholar
  106. Tremblay A and Lehoux JG. Influence of captopril on adrenal cytochrome-p-450s and adrenodoxin expression in high potassium or low sodium-intake. J. Steroid Biochem. Mol. Biol. 1992; 41: 799–808.PubMedCrossRefGoogle Scholar
  107. Tsutsumi K and Saavedra JM. Characterisation and development of angiotensin II receptor subtypes (AT1 and AT2) in rat brain. American Journal Of Physiology 1991; 261: R209–R216.PubMedGoogle Scholar
  108. Tzuzuki S, Ichiki T, Nakakubo H, et al. Molecular cloning and expression of the gene endoding human angiotensin II type 2 receptor. Biochem.Biophys.Res.Comm. 1994; 200: 1449–1454.CrossRefGoogle Scholar
  109. Urata H, Khosla MC, Bumpus FM and Husain A. Evidence for extracellular, but not intracellular, generation of angiotensin II in the rat adrenal zona glomerulosa. Proc.Natl.Acad.Sci., USA 1994; 85: 8251–8255.CrossRefGoogle Scholar
  110. Urquhart J, Davis JO and Higgins JT. Effects of prolonged infusion of angiotensin II in normal dogs. Am.J.Physiol. 1963; 205: 1241–1246.PubMedGoogle Scholar
  111. Vinson, G.P., Whitehouse, B.J. and Hinson, J.P. The adrenal cortex, Prentice-Hall, Englewood Heights, NJ.:1992.Google Scholar
  112. Vinson GP, Hinson JP and Toth IE. The neuroendocrinology of the adrenal cortex. J.Neuroendocr. 1994; 6: 235–246.CrossRefGoogle Scholar
  113. Vinson GP, Puddefoot JR, Ho MM, Barker S, Mehta J, Saridogan E, and Djahanbakhch O. Type 1 angiotensin II (AT1) receptors in rat and human sperm. J.Endocr. 1995; 144: 369–378.PubMedCrossRefGoogle Scholar
  114. Wang Y, Yamaguchi T, Franco Saenz R and Mulrow PJ. Regulation of renin gene expression in rat adrenal zona glomerulosa cells. Hypertension. 1992; 20: 776–781.PubMedCrossRefGoogle Scholar
  115. Williams BC, Lightly ER, Ross AR, Bird IM and Walker SW. Characterization of the steroidogenic responsiveness and ultrastructure of purified zona fasciculata/reticularis cells from bovine adrenal cortex before and after primary culture. J.Endocrinol. 1989; 121: 317–324.PubMedCrossRefGoogle Scholar
  116. Wong PC, Hart SD, Zaspel AM, et al. Functional studies of nonpeptide angiotensin II receptor subtype-specific ligands: DuP 753 (AII-1) and PD123177 (AII-2). J.Pharmacol.Exp.Ther. 1990; 255: 584–592.PubMedGoogle Scholar
  117. Woodcock EA and Johnston CI. Inhibition of adenylate cyclase in rat adrenal glomerulosa cells by angiotensin II. Endocrinology 1984; 115: 337–341.PubMedCrossRefGoogle Scholar
  118. Woodcock EA, Smith AI and White LB. Angiotensin II-stimulated phosphatidylinositol turnover in rat adrenal glomerulosa cells has a complex dependence on calcium. Endocrinology 1988; 122: 1053–1059.PubMedCrossRefGoogle Scholar
  119. Yamaguchi T, Naito Z, Stoner GD, Franco Saenz R and Mulrow PJ. Role of the adrenal renin-angiotensin system on adrenocorticotropic hormone-and potassium-stimulated aldosterone production by rat adrenal glomerulosa cells in monolayer culture. Hypertension. 1990; 16: 635–641.PubMedCrossRefGoogle Scholar
  120. Yamaguchi T, Franco Saenz R and Mulrow PJ. Effect of angiotensin II on renin production by rat adrenal glomerulosa cells in culture. Hypertension. 1992a; 19: 263–269.PubMedCrossRefGoogle Scholar
  121. Yamaguchi T, Tokita Y, Franco Saenz R, Mulrow PJ, Peters J and Ganten D. Zonal distribution and regulation of adrenal renin in a transgenic model of hypertension in the rat. Endocrinology. 1992b; 131: 1955–1962.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • G. P. Vinson
    • 1
  1. 1.Department of BiochemistryQueen Mary & Westfield CollegeLondonUK

Personalised recommendations