Effect of Green Compact Pore Size Distribution on the Sintering of α-Fe2O3

  • C. V. Santilli
  • S. H. Pulcinelli
  • J. A. Varela
  • J. P. Bonnet

Abstract

The bulk electrical properties of α-Fe2O3 are very useful for many potential applications.1,2 The macroscopic properties of sintered α-Fe2O3 are due to inter- and intra-granular features which are highly dependent on the ceramic microstructure and on the presence of structural defects.3 Twinning and dislocations normally present in α-Fe2O3 ceramics influence the magnetic and electric structure. As a consequence, electronic transport associated with the varistor effect in this material is dependent on the concentration of these defects, which in turn are dependent on the morphological characteristics of the precursors and on the sintering conditions.45 There is no agreement on sintering mechanisms of α-Fe2O3 reported in the literature. For low temperatures between 500 and 700℃ Whittemore and Varela6 have shown large pore growth during sintering, explained by the coalescence of grains. Idzikowski7 observed a fast grain growth in this range of temperatures, suggesting a mechanism of mass transport due to different types of necks. Santilli et al8 showed that grain coalescence occurs mainly in powders derived from goethite while grain growth does not occur in compacts made from amorphous iron oxide precursors. Yamaguchi and Kosha9 studied the sintering of α-Fe2O3 with elongated and spherical particle shapes, derived from the calcining of a-FeOOH and Fe2(S04)3, respectively. They observed a fast initial densification with pore growth and grain reorientation of acicular particles. This behavior was attributed to structural rearrangement.

Keywords

Structural Rearrangement Sinter Time Compaction Pressure Pore Size Distribution Curve Pore Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Leygraf, M. Hendewerd and G. Smorgai, J. Solid State Chem. 48, 357 (1983).Google Scholar
  2. 2.
    Y. Nakatami, M. Sakai and M. Matsuoka, Jpn J. Appl. Phys 22(6), 912(1983).Google Scholar
  3. 3.
    A. J. Bosmam and H. J. VanDaal, Adv. Phys. 19 (77), 1 (1970).CrossRefGoogle Scholar
  4. 4.
    C. V. Santilli, J. P. Bonnet, P. Dordor, M. Onillon and P. Hagenmuller, Ceramics International to be published.Google Scholar
  5. 5.
    C. V. Santilli, M. Onillon and J. P. Bonnet, Mater. Sci. and Engr. B, to be published.Google Scholar
  6. 6.
    J. Whittemore and J. A. Varela, in Sintering Processes, ed G. C. Kuczynski, Plenum Publ. Co. p. 51 (1980).Google Scholar
  7. 7.
    S. Idzikowski, Trans. Brit. Ceram. Soc. 76 (4), 74 (1977).Google Scholar
  8. 8.
    C. V. Santillí, M. Onillon and J. P. Bonnet, Ceramics International, to be published.Google Scholar
  9. 9.
    T. Yamaguchi and H. Kosha, J. Am. Ceram. Soc. 66 (3), 210 (1983).CrossRefGoogle Scholar
  10. 10.
    E. W. Washburn, Proc. Nat. Acad. Sci. 7, 115 (1921).CrossRefGoogle Scholar
  11. 11.
    H. G. Riella, G. L. Martinez and K. Imakuma, J. of Nuclear Mater. 153, 71 (1988).CrossRefGoogle Scholar
  12. 12.
    S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity, Academic Press p. 173 (1982).Google Scholar
  13. 13.
    W. D. Kingery and B. Francois in Sintering and Related Phenomena, ed. G. C. Kuczynski, N. A. Hooton and G. I. Gibbon, Gordon and Breach, N. York, p. 471 (1967).Google Scholar
  14. 14.
    F. F. Lange, J. Am. Ceram. Soc. 67 (2), 83 (1984).CrossRefGoogle Scholar
  15. 15.
    J. A. Varela and O. J. Whittemore, J. Am. Ceram. Soc. 66 (1), 78 (1983).CrossRefGoogle Scholar
  16. 16.
    M. W. Weiser and L. C. De Jonghe, J. Am. Ceram. Soc. 69 (11), 822 (1986).CrossRefGoogle Scholar
  17. 17.
    J. Whittemore and J. A. Varela, Sintering of Oxide Ceramics, vol 10, Ed. W. D. Kingery, Am. Ceram. Soc., p. 583 (1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • C. V. Santilli
    • 1
  • S. H. Pulcinelli
    • 1
  • J. A. Varela
    • 1
  • J. P. Bonnet
    • 1
    • 2
  1. 1.Instituto de QuimicaUNESP c.p. 174Araraquara SPBrazil
  2. 2.Laboratoire de Quimie du SolideUniversite de BordeauxTalenceFrance

Personalised recommendations