Rate Controlled Sintering for Ceramics and Selected Powder Metals

  • Hayne PalmourIII

Abstract

After almost a quarter-century of research and development at NCSU, the process optimization method for densification of ceramics now known as Rate Controlled Sintering (RCS) has more-or-less ‘come of age’. For a wide range of ceramic materials, it has been found to provide an efficient and effective means for determining near-optimum (though typically non-linear) temperature-time pathways for densification. In doing so, it appears to beneficially influence and regulate the ‘path of morphological change,’ thereby facilitating refinement and control of final sintered micro­structures. More recently, it has also been found useful for the sintering of a special class of high-porosity metal compacts (e.g., those that have been formed by injection molding).

In this paper, the background and evolution of RCS concepts and experi­mental procedures are reviewed, and some recent examples of its applications for both ceramics and powdered metals are introduced to illustrate its versatility. Consideration is then given to certain unifying factors that are thought to enable RCS methods to operate effectively across such a diverse range of materials and conditions. Finally, possible extensions of RCS methodologies into other classes of materials, higher temperature regimes and/or hybrid process routes are evaluated and discussed.

Keywords

Fractional Density Carbonyl Iron Conventional Sinter Barium Titanates22 Densification Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Palmour III, D. R. Johnson, Phenomenological model for rate controlled sintering, p 779–791 in G. C. Kuczynski et al, eds., Sintering and Related Phenomena. Gordon & Breach, NY, 1967.Google Scholar
  2. 2.
    H. Palmour III, R. A. Bradley, D. R. Johnson, A reconsideration of stress and other factors in the kinetics of densification, pp 392–407 in T.J.Gray, V.D.Frechette, eds., Kinetics of Reaction in Ionic Systems. Mater. Sci. Res., Vol. 4, Plenum Press, NY, 1969.Google Scholar
  3. 3.
    H. Palmour III, M. L. Huckabee, U.S.Patent 3,900,542, Process for Sintering Finely Divided Particulates and Resulting Ceramic Products, 1975.Google Scholar
  4. 4.
    T. M. Hare, H. Palmour III, Process optimization and its effect on properties of alumina sintered under rate control, pp 307–320 in G.Y.Onoda Jr., L.L.Hench, eds., Ceramic Processing Before Firing. John Wiley & Sons, NY, 1978.Google Scholar
  5. 5.
    M. L. Huckabee, T. M. Hare, H. Palmour III, Rate controlled sintering as a processing method, pp 205–215 in H. Palmour III, R. F. Davis, T. M. Hare, eds., Processing of Crystalline Ceramics. Mater. Sci. Res., Vol. 11, Plenum Press, NY, 1978.CrossRefGoogle Scholar
  6. 6.
    H. Palmour III, M. L. Huckabee, Rate controlled sintering, pp 278–297 in S. Somiya, ed., Proc Intl Symp Factors in Densification and Sintering of Oxide and Non-Oxide Ceramics. Tokyo Inst. Tech, 1978.Google Scholar
  7. 7.
    H. Palmour III, M. L. Huckabee, T. M. Hare, Rate controlled sintering: principles and practice, p 46–56 in M.M.Ristic’, ed., Sintering–New Developments. Elsevier Science Publ, Amsterdam, 1979.Google Scholar
  8. 8.
    H. Palmour III, T. M. Hare, Sintering of SYNROC: case history for phase formation and densification of complex oxide systems, pp. 185–192 in D. Kolar, S. Pejovnik and M. M. Ristic’, eds., Sintering–Theory and Practice. Mat’ls Sci. Monographs 14, Elsevier Scientific Publishing Company, Amsterdam, 1982.Google Scholar
  9. 9.
    A. D. Batchelor, M. J. Paisley, T. M. Hare, H. Palmour III, Precision digital dilatometry: a microcomputer-based approach to sintering studies, pp. 233–251 in R. F. Davis, H. Palmour III, R. L. Porter, eds., Emergent Process Methods for High Technology Ceramics. Mat. Sci. Res., Vol 17, Plenum Press, New York, 1984.CrossRefGoogle Scholar
  10. 10.
    H. Palmour III, T. M. Hare, Rate controlled sintering revisited, pp 1734 in G. C. Kuczynski, D. P. Uskokovic’, H. Palmour III and M. M. Ristic’, eds., Sintering ‘85. Plenum Press, New York, 1987.Google Scholar
  11. 11.
    H. Palmour III, Rate controlled sintering of a whiteware porcelain, Ceramic Engineering & Science Proceedings (Amer. Ceram. Soc.), 7 (11–12) 1203–1212 (1986).Google Scholar
  12. 12.
    A. Kingon, S. Chevacharoenkul, S. Pejovnik, R. Velasquez, R. Porter, T. Hare, H. Palmour III, Processing and microstructures of YBa2Cu3O7–8, pp. 335–348 in W. E. Hatfield and J. E. Miller, eds., High Temperature Superconducting Materials: Preparation, Properties and Processing. Marcel Dekker, Inc. New York–Basel, 1988.Google Scholar
  13. S. Pejovnik, T. Hare, A. Kingon, R. Porter, H. Palmour III, Sintering and microstructure development in superconducting YBa2Cu307–8, pp. 1472–1477 in S. Somiya, M. Shimada. M. Yoshimura and R. Watanabe, eds., Sintering ‘87.Elsevier Applied Science, London, New York, Tokyo, 1989.Google Scholar
  14. 14.
    S. Pejovnik, R. L. Porter, A. I. Kingon, T. M. Hare, H. Palmour III, Calcination, milling and pressing of sinterable YBa2Cu3O7–8 powders from mixed oxides and carbonates, ibid.,pp. 1478–1483.Google Scholar
  15. 15.
    S. Pejovnik, Z. Lengar, V. Hudnik, T. Meden, A. I. Kingon, H. Palmour III, Control of synthesis and ionic states of copper atoms in Y-Ba-Cu-OGoogle Scholar
  16. system, Journal of the Slovenian Chemical Society [Vestn. Siov. Kem. Drus.] 35 (4) 379–385 (1988).Google Scholar
  17. H. Palmour III, Rate controlled sintering technology for PM and composites, Powder Metal Report, 572–579, September, 1988.Google Scholar
  18. 17.
    M. F. Yan, Microstructural control in the processing of electronicGoogle Scholar
  19. ceramics“, Materials Science and Engineering 48 53–72 (1981). 18.R. J. Brook, Additives and the sintering of ceramics, Science ofGoogle Scholar
  20. Sintering 20 (2/3) 115–118 (1988).Google Scholar
  21. 19.
    P. Greil, Opportunities and limits in engineering ceramics, Powder Metal. Intl., 21 (2) 40–46(1989)Google Scholar
  22. 20.
    P. Wong, D. R. Messier, Procedure for fabrication of Si3N4 by rateGoogle Scholar
  23. controlled reaction sintering, Amer. Ceram. Soc. Bull. 57 (5) 525–526 (1978).Google Scholar
  24. W. J. Lackey, P. Angelini, A. J. Caputo, C. E. Devore, J. C. McLaughlin, D. P. Stinton, R. E. Hutchens, Rate controlled technique for calcining and drying, Commun. Am. Ceram. Soc.(7) C-102 - C-104 (1984).Google Scholar
  25. 22.
    L. Schaepelynck, J. M Haussonne, Application de la nouvelle dilatométrie: étude théorique du frittage et frittage a vitesse de retrait controlée, Science of Ceramics, 12 313 (1984).Google Scholar
  26. 23.
    J. M. Haussonne, L. Schaepelynck, A new concept of dilatometry: technology and applications, pp 19–38 in Advances in Ceramics, Vol. 11, Amer. Ceram.Soc. (1984).Google Scholar
  27. 24.
    C. Genuist and J. M. Haussonnne, Sintering of BaTiO3: dilatometric analysis of diffusion models and microstructural control, Ceramics International 14 169–179 (1988).CrossRefGoogle Scholar
  28. 25.
    B.-S. Chiou, C.-M. Koh and J.-G. Duh, The influence of firing profile and additives on the PTCR effect and microstructure of BaTiO3, J. Mater. Sci. 22 (11) 3893–3900 (1987).CrossRefGoogle Scholar
  29. 26.
    W. Wersing, H. Wahl and M. Schnöller, PZT-Based multilayer piezoelectric ceramics with AgPd-internal electrodes, Ferroelectrics 87 271–294 (1988).CrossRefGoogle Scholar
  30. 27.
    K.-L. Weisskopf, H. Palmour III, N. Claussen, Strengthening of Zr02containing Al203-rich spinel ceramics, presented at Fall Meeting, The American Ceramic Society, San Fransisco, CA, October 29, 1984.Google Scholar
  31. 28.
    K. Nieszery, K.-L.Weisskopf, G. Petzow, W. Pannhorst, Sintering and strengthening of cordierite with different amounts of zirconia, Science of Sintering 20 (2/3) 149–154 (1988).Google Scholar
  32. 29.
    W. Semar, W. Pannhorst, T. M. Hare, H. Palmour III, On the sintering of a crystalline cordierite/Zr02–composite, “ Glastechnische Berichte 62 (2) 74–78 (1989).Google Scholar
  33. 30.
    A. Kranzmann, P. Greil, G. Petzow, Pressureless sintering of aluminum nitride, Science of Sintering 20 (2/3) 135–139 (1988).Google Scholar
  34. 31.
    J.-M. Lihrmann, E. Kostic’, H. Schubert, G. Petzow, Rate-controlled sintering of silicon carbide with additives (a) B and C, (b) Y203 and Al203, this volume.Google Scholar
  35. 32.
    a) R. M. German and K. W. Lay, eds., Proceedings of Symposium onGoogle Scholar
  36. Processing of Metal and Ceramic Powders. The Metallurgical Society of AIME, 1982.Google Scholar
  37. (b).
    R. M. German, Powder Metallurgy Science. Metal Powder Industries Federation, 1984.Google Scholar
  38. (c).
    R. M. German, Liquid Phase Sintering, Plenum Press, New York-London, 1985.Google Scholar
  39. (d).
    R. M. German, Particle Packing Characteristics. Metal Powder Industries Federation, Princeton, N. J., 1989.Google Scholar
  40. 33.
    J. Beuers, M. Poniatowski, Metal injection molding–a progressive shaping process requires sophisticated sintering techniques, pp 230–236 in S. Somiya, M. Shimada. M. Yoshimura and R. Watanabe, eds., Sintering ‘87. Elsevier Applied Science, London, New York, Tokyo, 1989.Google Scholar
  41. 34.
    H. Palmour III, I. K. Simonsen, H. H, Stadelmaier, The Eutectoids in iron - carbon alloys prepared by powder metallurgy, Z. Metallkde. 80 (8)Google Scholar
  42. 35.
    H. E. Exner, G. Petzow, P. Weidner, pp 352–362 in G. C. Kuczynski, ed., Sintering and Related Phenomena, Plenum Press, New York-London, 1973.Google Scholar
  43. 36.
    T. M. Hare, Statistics of early sintering and rearrangement by computer simulation, pp 77–93 in G. C. Kuczynski, ed., Sintering Processes. Mater.Sci. Res., Vol. 13, Plenum Press, New York–London, 1980.Google Scholar
  44. 37.
    T. T. Fang, H. Palmour III, Evolution of pore morphology in the sintering of powder compacts.[In Press, Ceramics International.]Google Scholar
  45. 38.
    T. M. Hare, K. L. More, A. D. Batchelor, H. Palmour III, Sintering behavior of overcompacted shock-conditioned alumina powder, pp 265–280 in G. C. Kuczynski, A. E. Miller and G. A.Sargent, eds., Sintering and Heterogeneous Catalysis. Plenum Press, New York–London, 1984.Google Scholar
  46. 39.
    H. J. Leu, T. M. Hare, and R. O. Scattergood, A computer simulation method for particle sintering, Acta Metall. 36 (8) 1977–1987 (1988).CrossRefGoogle Scholar
  47. 40.
    F. F. Lange, Sinterability of agglomerated powders, J. Am. Ceram. Soc. 67 (2) 83 (1984).CrossRefGoogle Scholar
  48. 41.
    S. J. Bennison, M.P.Harmer, Grain growth and cavity formation in Mg0 doped Al203, Advances in Ceramics, VI 171–183 (1983).Google Scholar
  49. 42.
    G. C. Kuczynski, Statistical approach to the science of sintering, pp 325–337 in Mater. Sci. Res., Vol. 10, Plenum Press, New York-London, 1975.Google Scholar
  50. 43.
    G. C. Kuczynski, Statistical theory of sintering, Z. Metallkunde, 67 (9) 606–610 (1976).Google Scholar
  51. 44.
    G. C. Kuczynski, Statistical theory of pore shrinkage and grain growth during powder compact densification, pp 233–245 in R. M. Fulrath and J. A. Pask, eds., Ceramic Microstructure-’76. Westview Press, Boulder, Colorado, 1977.Google Scholar
  52. 45.
    G. C. Kuczynski, Statistical Theory of sintering and microstructure evolution, pp 37–44 in D. Kolar, S. Pejovnik and M. M. Ristic’, eds., Sintering–Theory and Practice. Mater. Sci. Monographs, Vol. 14, Elsevier, Amsterdam, 1982.Google Scholar
  53. 46.
    H. Palmour III, A. D. Batchelor, K. L. More, T. T. Fang, M. J. Paisley, G.T. Goudey, T. M. Hare, The later Kuczynski: an appreciation of his ‘statistical theory’ from the experimentalists’ viewpoint, Science of Sintering (5) 77–89 (1984).Google Scholar
  54. 47.
    T. T. Fang, H. Palmour III, Useful extensions of the statistical theory of sintering.[In Press, Ceramics International.]Google Scholar
  55. 48.
    T. T. Fang, H. Palmour III, Non-destructive characterization of morphological development in sintered powder compacts.[In Press, Ceramics International.]Google Scholar
  56. 49.
    H. E. Exner, Principles of single phase sintering, in F. V. Lenel, ed., Reviews on Powder Metallurgy and Physical Ceramics (Fruend Publishing House, Tel Aviv) (1) 1 (1979).Google Scholar
  57. 50.
    G. R. Anstis, P. Chantikul, B. R. Lawn and D. B. Marshall, A critical evaluation of indentation techniques for measureing fracture toughness: I. direct crack measurements, J. Am Ceram. Sc. 64 (9) 533 (1981).CrossRefGoogle Scholar
  58. 51.
    J. C. Russ, H. Palmour III, T. M. Hare, Direct 3-D pore location measurement in alumina [In press, Journal of Microscopy, London].Google Scholar
  59. 52.
    R. Oberacker, K. Dorfschmidt, T. Liu and F. Thümmler, Application of rate controlled sintering in the production of ZrO2-based ceramic materials, this volume.Google Scholar
  60. 53.
    W. Kaysser and I. S. Ahn, Rate controlled sintering of Ni doped W, in Modern Developments [Proceedings of PM ‘88, Orlando; In Press].Google Scholar
  61. 54.
    R. T. DeHoff, Stereological theory of sintering, this volume.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Hayne PalmourIII
    • 1
  1. 1.Department of Materials Science and EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations