Explosive Compaction of Powders: Principle and Prospects

  • R. Prümmer

Abstract

It is the wish of each powder metallurgist to posses presses with great capacities developing high pressures. Hard powders are especially difficult to compact. For this reason, the Hot Isostatic Pressing procedure was developed. Explosive Compaction on the other hand has the potential of developing very high pressures, dynamically applicable to powders. Its achievements include not only relatively high densities for green compacts(approximately 100% of theoretical density), but also the possibility of creating new materials. The main features of the method are explained and a survey of the latest developments is given.

Keywords

Shock Wave Adiabatic Shearing Diamond Powder Tungsten Powder Dynamic Compaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ya. N. Riabinin: Certain Experiments on Dynamic Compression of Substances, Sovj. Phys.-Techn. J. 1 (1956) 2575.Google Scholar
  2. 2.
    S. W. Proembka: Compacting Metal Powders with Explosives, Powder Metallurgy 6 (1960) 125.Google Scholar
  3. 3.
    J. Pearson: The Explosive Compaction of Powders, in: Adv. in High Energy Rate Forming, ASTME, Detroit (1961) SP 60–158.Google Scholar
  4. 4.
    R. W. Leonard, D. Laber and V. D. Linse: Advances in Explosive Powder Compaction, Proc. 2nd. Int. Conf. HERF, Estes Park, Co., U.S.A. (1969), 8–3–1.Google Scholar
  5. 5.
    R. A. Prümmer: Latest Results in the Explosive Compaction of Metal and Ceramic Powders and their Mixtures, Proc. 4th Int. Conf. HERF (1973) Vail, Co. U.S.A.Google Scholar
  6. 6.
    A. A. Deribas, A. M. Stayer: Shock Compression of Porous Cylindrical Bodies, Fizika Gorenija i Vzryva 10 (1974), No. 4, 568–578.Google Scholar
  7. 7.
    R. A. Prümmer, G. Ziegler: Structure and Annealing Behaviour of Explosively Compacted Alumina Powders, Powder Metallurgy Int. 1 (1977), 374.Google Scholar
  8. 8.
    M. A. Meyers and S. L. Wang: An Improved Method for Shock Consolidation of Powders, 2nd Workshop on Industrial Application Feasibility of Dynamic Compaction Technology, Tokyo, ( December 1988 ).Google Scholar
  9. 9.
    G. R. Cowan: Plug Closure in a Container for Subjecting Sample to Shock Wave, US Patent 3.568.248 (March 9, 1971 ).Google Scholar
  10. 10.
    R. Prümmer: Explosivverdichten pulvriger Substanzen, Springer Verlag, Berlin, Heidelbg., New York, London, Paris, Tokyo (1987), ISBN 3–540–17029–4, p.37.Google Scholar
  11. 11.
    M. L. Wilkins, in Methods of Computational Physics, Vol. 3 (1964), B. Alder, S. Fernbach and M. Rotenberg (eds.), Academic Press, New York.Google Scholar
  12. 12.
    J. E. Reaugh: The Explosive Consolidation of Rods, J. Appl. Phys. 61 (1987) No. 3, 962–968.CrossRefGoogle Scholar
  13. 13.
    M. V. Thiel, A. S. Kusubov et al., eds.: Compendium of shock wave data, UCRL-50108 (TID-45000).Google Scholar
  14. 14.
    T. Akashi and A. B. Sawaoka: Shock Consolidation of Diamond Powders, J. Mat. Science 22 (1987) 3276–86.CrossRefGoogle Scholar
  15. 15.
    R. Prümmer: Dynamic Compaction of Powders, Proc. 19th Univ. Conf. Emergent Process Methods for High Technology Ceramics, R.F. Davis, H. Palmour III and R. L. Porter eds (1984), Plenum Press New York, London, 621–636.Google Scholar
  16. 16.
    D. Reybould: The Cold Welding of Powders by Dynamic Compaction, Int. J. Powder Met. and Techn. 16 (1980), 9–12.Google Scholar
  17. 17.
    D. G. Morris: The Compaction and Mechanical Properties of Metallic Glass, Metal Science J. 15 (1981), 116–124.Google Scholar
  18. 18.
    R. B. Schwartz, P. Kasiraj, T. Vreeland Jr., and T.J. Ahrens: A Theory for the Shock Wave Consolidation of Powders, Acta Met. in press.Google Scholar
  19. 19.
    H. W. Gourdin: Energy Deposition and Microstructural Modification in Dynamically Consolidated Metal Powders, J. Appl. Phys. in press.Google Scholar
  20. 20.
    C. F. Cline and M. L. Wilkins: Dynamic Consolidation of a Rapidly Solidified Ni-Mo-B-Alloy, 8th Int. HERF Conf., San Antonio, Tx, U.S.A. (1984).Google Scholar
  21. 21.
    V. Roman, V. G. Gorobtsov, B. S. Mitin and V. A. Vasiljev: Structure and Properties of Iron-Base Amorphous Materials, Proc. 4th Int. Conf. RQM, (1981), Sendai, Japan.Google Scholar
  22. 22.
    N. N. Thadhani, A. H. Mutz and T. Vreeland J.: Structure/Property Evaluation and Comparison between Shock-Wave Consolidated and Hot-Isostatically Pressed Compacts of RSP Pyromet 718 Alloy Powders, Acta. Met. 37 (1989) No. 3, 897–908.Google Scholar
  23. 23.
    H. Palmour III, et. al: Effect of Dynamic and Isostatic Compaction on the Microstructure and Mechanical Behavior of A1N, TiB2 and TiC, APS Conf. Interaction of Shock Waves with Condensed Matter, Santa Fe, N.M., U.S.A. (1983):Google Scholar
  24. 24.
    K. Y. Kim, A. S. Batchelor, K. L. More and H. Palmour III: Rate Controlled Sintering of Explosively Shock Conditioned Alumina Powders, Proc. 19th Univ. Conf. Emergent Process Mesthods for High Technology Ceramics, Raleigh, N.C., U.S.A. (1982).Google Scholar
  25. 25.
    E. K. Beauchamp, R. A. Graham and M. J. Carr: Densification of Shock Wave treated Aluminum Nitride and Aluminum Oxide, Int. Conf. Interaction of Shock Waves with Condensed Matter, Santa Fe, N.M., U.S.A. (1983).Google Scholar
  26. 26.
    D. L. Hankey, R. A. Graham, W. F. Hammetters, and B. Morosin: Shock Induced Reactivity Enhancement of Zr02–Powders, J. Mat. Sci. Letters 1 (1982), 446–447.CrossRefGoogle Scholar
  27. 27.
    S. S. Batsanov: Synthesis under Shock Wave Pressures, in: Preparative Methods in Solid State Chemistry, (1987), Academic Press Inc, New York and London, 133–146.Google Scholar
  28. 28.
    J. Golden, F. Williams, B. Morosin, E. L. Venturini and R. A. Graham: Catalytic Activity of Shock Loaded TiO2 Powder, AIP. Conf. Proceedings 78 (ed H.C. Wolfe) Shock Waves in Condenses Matter - 1981 (Menlo Park) American Institute of Physics (1982) New York, 74–76.Google Scholar
  29. 29.
    Y. Horguchi and Y. Nomura: Formation of Zinc Ferrite by Explosive Compaction, Jap. J. of Appl. Phys. 2 (1963) 312.CrossRefGoogle Scholar
  30. 30.
    Y. Horiguchi and Y. Nomura: Explosive Synthesis of TiC by Contact Technique, Bull. Chem. Soc. 36 (1963) 486–496.CrossRefGoogle Scholar
  31. 31.
    S. S. Batsanov and E. S. Zolotova: Shock Synthesis of Chromium II Calcogenides, Dokl. Akad. Nauk SSSR 180 (1968), 93.Google Scholar
  32. 32.
    S. A. Batanov et al.: Impact Synthesis of TiN Chalcogenides, Dokl. Akad. Nauk SSSR 185 (1969), 33–331.Google Scholar
  33. 33.
    G. Otto, 0. Y. Reece and U. Roy: Synthesis of Nb3Sn by Shock Waves, Appl. Phys. Letters 18 (1971), 418.CrossRefGoogle Scholar
  34. 34.
    D. D. Hughes and V. D. Linse: Formation of Superconducting Nb3Si by Explosive Compression, J. Appl. Phys. 50 (1979), 3500.CrossRefGoogle Scholar
  35. 35.
    L. E. Murr, A. W. Hare and N. G. Eror: Fabrication of Novel Bulk Superconductor Composites by Simultaneous Explosive Consolidation and Bonding, in; Shock Waves for Industrial Applications, E. Murr ed., Noyes Publ., Park Ridge, N.J. USA (1989), 473–527.Google Scholar
  36. 36.
    R. A. Prümmer, C. Polítis, H. Keschtkar: Synthesis of High Temperature Superconductors by Explosive Compaction, X Int. HERF Conf. Ljubljana, Jugoslavia, Sept.89.Google Scholar
  37. 37.
    S. Hagino et al.: Microstructures and Superconducting Properties of YBaCu Oxide Coils Repared by the Explosive Compaction Technique, Proc. 1st Int. Conf. Superconductivity, 1988, Nagoya, Japan.Google Scholar
  38. 38.
    T. Kottke and A. Niiler: Effects of Thermal Conductivity on the SHS-Reaction Kinetics, Material Processing by SHS, MTL-SP-87–3 (1987).Google Scholar
  39. 39.
    M.A. Meyers, N. N. Thadani and Li-Hsing Yu: Explosive Shock Wave Consolidation of Metal and Ceramic Powders, in Shock Waves for Industrial Application, L. Murr ed. Noyes Publications, Park Ridge, N.J. USA, (1989).Google Scholar
  40. 40.
    P. S. DeCarli and C. J. Jamieson: Formation of Diamond by Explosive Shock, Science 133 (1961), 1821.Google Scholar
  41. 41.
    P. S. DeCarli: Shock Wave Synthesis of High Pressure Phases, in: Science and Technology of Industrial Diamonds, ed. J. Burls, Industrial Diamond Inf. Bureau, London (1967) 49–64.Google Scholar
  42. 42.
    R. Bergman: Detaclad Explosion Bonded Metals and Shock Synthesized Polycrystalline Diamond, Proc. 7th Int. Conf. HERF, Leeds, US (1981), 142–151.Google Scholar
  43. 43.
    N. L. Coleburn and J. V. Forbes: Irreversible Transformation of Hexagonal Boron Nitride by Shock Compression, J. Chem. Phys. 48 (1968), 555.CrossRefGoogle Scholar
  44. 44.
    S. S. Batsanov and L. R. Batsanova: Effect of Explosions on Matter: Formation of Dense Modifications of Boron Nitride, Zh. Strukt. Chim. 9 (1968), 1024.Google Scholar
  45. 45.
    G. H. Zhadanovich et. al.: Method of Obtaining Diamond and/or Diamond-like Modifications of Boron-Nitride, UK-Pat. 2090239 (1980).Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • R. Prümmer
    • 1
  1. 1.Fraunhofer CompanyMünchenW. Germany

Personalised recommendations