Neurons and Their Peptide Transmitters in Coelenterates

  • C. J. P. Grimmelikhuijzen
  • D. Graff
  • O. Koizumi
  • J. A. Westfall
  • I. D. McFarlane
Chapter
Part of the NATO ASI Series book series (NSSA, volume 188)

Abstract

Coelenterates have the simplest nervous system in the animal kingdom, and it was probably within this group of animals that nervous systems first evolved. Present day coelenterates are diverse and comprise two phyla. The classes Hydrozoa (for example Hydra), Cubozoa (“box jellyfishes”), Scyphozoa (“true jellyfishes”) and Anthozoa (for example sea anemones and corals) constitute the phylum Cnidaria. A companion phylum is the Ctenophora (“combjellies”) or Acnidaria. Most Hydrozoa, Cubozoa and Scyphozoa have a life cycle including a polyp (sessile) and medusa (mobile) form. In Anthozoa, the medusa is lacking, whereas in Ctenophora no polyps occur. Coelenterates can either live individually or in colonies. Many Hydrozoa and Anthozoa form colonies of polyps (e.g. corals), but also mixed colonies of polyps and medusae exist. The physonectid siphonophores, for example, are swimming hydrozoans consisting of a long stem to which numerous medusae and various forms of polyps are attached.

Keywords

Radial Nerve Sensory Cell Carboxy Terminus Nerve Ring Giant Axon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, P. A. V., 1985, Physiology of a bidirectional, excitatory, chemical synapse, J. Neurophysiol. 53:821–835.PubMedGoogle Scholar
  2. Anderson, P. A. V., and Mackie, G. O., 1977, Electrically coupled, photosensitive neurons control swimming in a jellyfish, Science 197:186–188.PubMedCrossRefGoogle Scholar
  3. Anderson, P. A. V., and Schwab, W. E., 1982, Recent advances and model systems in coelenterate neurobiology, Prog. Newobiol. 19:213–236.CrossRefGoogle Scholar
  4. Brownstein, M. J., Russel, J. T., and Gainer, H., 1980, Synthesis, transport, and release of posterior pituitary hormones, Science 207:373–378.PubMedCrossRefGoogle Scholar
  5. Burnett, A. L., and Diehl, N. A., 1964, The nervous system of Hydra. I. Types, distribution and origin of nerve elements, J. Exp. Zool. 157:217–226.PubMedCrossRefGoogle Scholar
  6. Chang, J. Y., Brauer, D., and Wittmann-Liebold, B., 1978, Microsequence analysis of peptides and proteins using 4-N, U-dimethylaminoazobenzene 4’-isothiocyanate/phenylisothiocyanate double coupling method, FEBS Lett. 93:205–214.CrossRefGoogle Scholar
  7. Davis, L. E., Burnett, A. L., and Haynes, J. F., 1968, Histological and ultrastructural study of the muscular and nervous system in Hydra. II. Nervous system, J. Exp. Zool. 167:295–332.PubMedCrossRefGoogle Scholar
  8. Fujita, T., and Kobayashi, S., 1979, Current views on the paraneurone concept, Trends Neurosci. 2:27–30.CrossRefGoogle Scholar
  9. Graff, D., 1988, Isolierung und Sequenzierung von Neuropeptiden aus Seeanemonen, Ph.D. Thesis, University of Heidelberg.Google Scholar
  10. Graff, D., and Grimmelikhuijzen, C. J. P., 1988a, Isolation of <Glu-Ser-Leu-Arg-Trp-NH2, a novel neuropeptide from sea anemones, Brain Res. 442:354–358.PubMedCrossRefGoogle Scholar
  11. Graff, D., and Grimmelikhuijzen, C. J. P., 1988b, Isolation of <Glu-Gly-Leu-Arg-Trp-NH2 (Antho-RWamide II), a novel neuropeptide from sea anemones, FEBS Lett., 239:137–140.PubMedCrossRefGoogle Scholar
  12. Gray, W. R., and Smith, J. F., 1970, Rapid sequence analysis of small peptides, Anal. Biochem. 33:3642.CrossRefGoogle Scholar
  13. Grimmelikhuijzen, C. J. P., 1983, FMRFamide immunoreactivity is generally occurring in the nervous systems of coelenterates, Histochem. 78:361–381.CrossRefGoogle Scholar
  14. Grimmelikhuijzen, C. J. P., 1984, Peptides in the nervous system of coelenterates, in: Evolution and Tumor Pathology of the Neuroendocrine System, pp. 39–58 (S. Falkmer, R. Håkanson, and F. Sundler, eds.), Elsevier, Amsterdam.Google Scholar
  15. Grimmelikhuijzen, C. J. P., 1985, Antisera to the sequence Arg-Phe-amide visualize neuronal centralization in hydroid polyps, Cell Tissue Res. 241:171–182.CrossRefGoogle Scholar
  16. Grimmelikhuijzen, C. J. P., 1986, FMRFamide-like peptides in the primitive nervous systems of coelenterates and complex nervous systems of higher animals, in: Handbook of Comparative Opioid and Related Neuropeptide Mechanisms, pp. 103–115 (G. Stephano, ed.), CRC Press, Boca Raton.Google Scholar
  17. Grimmelikhuijzen, C. J. P., and Graff, D., 1985, Arg-Phe-amide-like peptides in the primitive nervous systems of coelenterates, Peptides 6 (Suppl. 3):477–483.PubMedCrossRefGoogle Scholar
  18. Grimmelikhuijzen, C. J. P., and Graff, D., 1986, Isolation of <Glu-Gly-Arg-Phe-NH2 (Antho-RFamide), a neuropeptide from sea anemones, Proc. Natl. Acad. Sci. USA 83:9817–9821.PubMedCrossRefGoogle Scholar
  19. Grimmelikhuijzen, C. J. P., and Groeger, A., 1987, Isolation of the neuropeptide pGlu-Gly-Arg-Phe-amide from the pennatulid Renilla köllikeri, FEBS Lett. 211:105–108.CrossRefGoogle Scholar
  20. Grimmelikhuijzen, C. J. P. and Spencer, A. N., 1984, FMRFamide immunoreactivity in the nervous system of the medusa Potyorchis penicillatus, J. Comp. Neurol. 230:361–371.PubMedCrossRefGoogle Scholar
  21. Grimmelikhuijzen, C. J. P., Dockray, G. J., and Schot, L. P. C., 1982, FMRFamide-like immunoreactivity in the nervous system of Hydra, Histochem. 73:499–508.CrossRefGoogle Scholar
  22. Grimmelikhuijzen, C. J. P., Spencer, A. N., and Carré, D., 1986, Organization of the nervous system of physonectid siphonophores, Cell Tissue Res. 246:463–479.CrossRefGoogle Scholar
  23. Grimmelikhuijzen, C. J. P., Graff, D., and McFarlane, I. D., 1987, Neuropeptides in invertebrates, in: Nervous Systems in Invertebrates pp. 105–132 (M. A. Ali, ed.), Plenum Press, New York.CrossRefGoogle Scholar
  24. Grimmelikhuijzen, C. J. P., Graff, D., and Spencer, A. N., 1988a, Structure, location and possible actions of Arg-Phe-amide peptides in coelenterates, in: Neurohormones in Invertebrates, pp. 199–217 (M. C. Thorndyke and G. J. Goldsworthy, eds.), Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  25. Grimmelikhuijzen, C. J. P., Hahn, M., Rinehart, K. L., and Spencer, A. N., 1988b, Isolation of <Glu-Leu-Leu-Gly-Gly-Arg-Phe-NH2 (Pol-RFamide), a novel neuropeptide from hydromedusae, Brain Res. 475:198–203.PubMedCrossRefGoogle Scholar
  26. Grimmelikhuijzen, C. J. P., Graff, D., and McFarlane, I. D., 1989, Neurones and neuropeptides in coelenterates, Arch. Histol. Cytol. 52 (Suppl.):0–0.CrossRefGoogle Scholar
  27. Hadži, J., 1909, Über das Nervensystem von Hydra, Arb. Zool. Inst. Wien 17:225–268.Google Scholar
  28. Hernandez-Nicaise, M. L., 1973, The nervous system of Ctenophora. III. Ultrastructure of synapses, J. Neurocytol. 2:249–263.PubMedCrossRefGoogle Scholar
  29. Hertwig, O., and Hertwig, R., 1878, Das Nervensystem und die Sinnesorgane der Medusen, Vogel, Leipzig.Google Scholar
  30. Horridge, G. A., and Mackay, B., 1962, Naked axons and symmetrical synapses in an elementary nervous system, Nature 193:899–900.PubMedCrossRefGoogle Scholar
  31. Jha, FL K., and Mackie, G. O., 1967, The recognition, distribution and ultrastructure of hydrozoan nerve elements, J. Morphol. 123:43–62.PubMedCrossRefGoogle Scholar
  32. Kinnamon, J. C., and Westfall, J. A., 1981, A three-dimensional serial reconstruction of neuronal distributions in the hypostome of a Hydra, J. Morphol. 168:321–329.CrossRefGoogle Scholar
  33. Koizumi, O., Wilson, J. D., Grimmelikhuijzen, C. J. P., and Westfall, J. A., 1989, Ultrastructural localization of RFamide-like peptides in neuronal dense-cored vesicles in the peduncle of Hydra, J. Exp. Zool. 249:17–22.PubMedCrossRefGoogle Scholar
  34. Mackie, G. O., 1973, Report on giant nerve fibres in Nanomia, Publ. Seto Marine Labs. 20:745–756.Google Scholar
  35. Mackie, G.O., 1990, Evolution of cnidarian giant axons, in: Evolution of the First Nervous Systems, (PA.V. Anderson, ed.), Plenum Press, New York, in press.Google Scholar
  36. Mackie, G. O., Singla, C. L., and Stell, W. K., 1985, Distribution of nerve elements showing FMRFamidelike immunoreactivity in Hydromedusae, Acta. Zool. Stockh. 66:199–210.CrossRefGoogle Scholar
  37. Mackie, G. O., Singla, C. L., and Arkett, S. A., 1988, On the nervous system of Vettela (Hydrozoa: Chondrophora), J. Morphol. 198:15–23.CrossRefGoogle Scholar
  38. Martin, S. M., and Spencer, A. N., 1983, Neurotransmitters in coelenterates, Comp. Biochem. Physiol. 74c:1–14.Google Scholar
  39. Matsuno, T., and Kageyama, T., 1984, The nervous system in the hypostome of Pelmatohydra robusta: The presence of a circumhypostomal nerve ring in the epidermis, J. Morphol. 182:153–168.CrossRefGoogle Scholar
  40. McConnell, C. H., 1932, The development of the ectodermal nerve net in the buds of hydra, Quart. J. Microsc. Sci. 75:495–509.Google Scholar
  41. McFarlane, I. D., 1973, Spontaneous contractions and nerve-net activity in the sea anemone Calliactis parasitica, Mar. Behaviour Physiol. 2:97–113.CrossRefGoogle Scholar
  42. McFarlane, I. D., Graff, D., and Grimmelikhuijzen, C. J. P., 1987, Excitatory actions of Antho-RFamide, an anthozoan neuropeptide, on muscles and conducting systems in the sea anemone Calliactis parasitica, J. exp. Biol. 133:157–168.Google Scholar
  43. McFarlane, I. D., Graff, D., and Grimmelikhuijzen, C. J. P., 1990, Evolution of conducting systems and neurotransmitters in the Anthozoa, in: Evolution of the First Nervous Systems, (P. A. V. Anderson, ed.), Plenum Press, New York, in press.Google Scholar
  44. Price, D. A., and Greenberg, M., 1977, Structure of a molluscan cardioexcitatory neuropeptide, Science 197:670–671.PubMedCrossRefGoogle Scholar
  45. Satterlie, R. A., 1979, Central control of swimming in the cubomedusan jellyfish Charibdea rastonii, J. Comp. Physiol. 133:357–367.CrossRefGoogle Scholar
  46. Schneider, K. C., 1890, Histologie von Hydra fusca mit besonderer Berücksichtigung des Nervensystems der Hydropolypen, Arch. mikr. Anat. 35:321–379.CrossRefGoogle Scholar
  47. Schneider, L. E., and Taghert, P. H., 1988, Isolation and characterization of a Drosophila gene that encodes multiple neuropeptides related to Phe-Met-Arg-Phe-NH2 (FMRFamide), Proc. Natl. Acad. Sci. USA 85:1993–1997.PubMedCrossRefGoogle Scholar
  48. Spangenberg, D. E., and Harn, R. G., 1960, The epidermal nerve net of Hydra, J. Exp. Zool. 143:195–201.CrossRefGoogle Scholar
  49. Spencer, A. N., 1978, Neurobiology of Polyorchis. I. Function of effector systems, J. Neurobiol. 9:143–157.PubMedCrossRefGoogle Scholar
  50. Spencer, A. N., 1979, Neurobiology of Pofyorchis. II. Structure of effector systems, J. Neurobiol. 10:95–117.PubMedCrossRefGoogle Scholar
  51. Spencer, A. N., 1982, The physiology of a coelenterate neuromuscular synapse, J. Comp. Physiol. 148:353–363.CrossRefGoogle Scholar
  52. Spencer, A.N., 1990, Electrical and chemical synaptic transmission in the Cnidaria, in: Evolution of the First Nervous Systems, (P. A. V. Anderson, ed.), Plenum Press, New York, in press.Google Scholar
  53. Spencer, A. N., and Arkett, S. A., 1984, Radial symmetry and the organization of central neurones in a hydrozoan jellyfish, J. exp. Biol. 110:69–90.Google Scholar
  54. Spencer, A. N., and Satterlie, R. A., 1980, Electrical and dye coupling in an identified group of neurons in a coelenterate, J. Neurobiol. 11:13–19.PubMedCrossRefGoogle Scholar
  55. Tardent, P., and Weber, C., 1976, A qualitative and quantitative inventory of nervous cells in Hydra attenuata Pall, in: Coelenterate Ecology and Behaviour, pp. 501–512 (G. O. Mackie, ed.), Plenum Press, New York.CrossRefGoogle Scholar
  56. Taussig, R., and Scheller, R. H., 1986, The Apfysia FMRFamide gene encodes sequences related to mammalian brain peptides, DNA 5:453–461.PubMedCrossRefGoogle Scholar
  57. Weber, C., 1989, Smooth muscle fibers of Podocoryne cornea (Hydrozoa) demonstrated by a specific monoclonal antibody and their association with neurons showing FMRFamide-like immunoreactivity, Cell Tissue Res. 255:275–282.CrossRefGoogle Scholar
  58. Westfall, J. A., 1973a, Ultrastructural evidence for a granule-containing sensory-motor-interneuron in Hydra littoralis, J. Ultrastruct. Res. 42:268–282.PubMedCrossRefGoogle Scholar
  59. Westfall, J. A., 1973b, Ultrastructural evidence for neuromuscular systems in coelenterates, Am. Zool. 13:237–246.Google Scholar
  60. Westfall, J. A., 1987, Ultrastructure of invertebrate synapses, in: Nervous Systems in Invertebrates, pp. 3–28 (M. A. Ali, ed.), Plenum Press, New York.CrossRefGoogle Scholar
  61. Westfall, J. A., and Kinnamon, J. C., 1978, A second sensory-motor-interneuron with neurosecretory granules in Hydra, J. Neurocytol. 7:365–379.PubMedCrossRefGoogle Scholar
  62. Westfall J. A., and Kinnamon, J. C., 1984, Perioral synaptic connections and their possible role in feeding behavior of Hydra, Tissue Cell 16:355–365.PubMedCrossRefGoogle Scholar
  63. Westfall, J. A., Kinnamon, J. C., and Sims, D. E., 1980, Neuro-epitheliomuscular cell and neuro-neuronal gap junctions in Hydra, J. Neurocytol. 9:725–732.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • C. J. P. Grimmelikhuijzen
    • 1
  • D. Graff
    • 1
  • O. Koizumi
    • 2
  • J. A. Westfall
    • 2
  • I. D. McFarlane
    • 3
  1. 1.Centre for Molecular NeurobiologyUniversity of HamburgHamburg 20Federal Republic of Germany
  2. 2.Department of Anatomy and Physiology, College of Veterinary MedicineKansas State UniversityManhattanUSA
  3. 3.Department of Applied BiologyUniversity of HullHullUK

Personalised recommendations