The Functional Significance of Evolutionary Modifications found in the Ciliate, Stentor

  • David C. Wood
Chapter
Part of the NATO ASI Series book series (NSSA, volume 188)

Abstract

The ciliate protozoan, Stentor coruleus, is notable for the range of its sensory capabilities, the variety of its behavioral responses, and its ability to assume different morphologies. This versatility is well illustrated in H. S. Jennings’s (1906) account of the response of sessile Stentor to carmine particles introduced into the medium surrounding their frontal field. These extended and trumpet-shaped Stentor were reported to respond initially to this irritant by bending to one side. If carmine particles continued to be present, the animals reversed the direction of their ciliary beat, thereby driving the carmine particle-containing fluid away from them. If this also did not remove the carmine particles, the Stentor contracted into a ball. They then went through several cycles of gradual re-extension and all-or-none contraction until finally they detached, assumed a pear-shaped configuration, and swam away. While more recent investigators have found that this behavioral sequence is not reproducible (Reynierse and Walsh, 1967), all the behavioral responses and cellular morphologies described in it are easily observable. In addition, sessile Stentor contract when mechanically stimulated or in response to certain chemicals, and motile Stentor swim away from light sources, as a result of their blue-green pigmentation.

Keywords

Mechanical Stimulus Vacuolar Membrane Evolutionary Modification Receptor Current Contractile Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alkon, D. L., Lederhendler, I., and Shoukimas, J. J., 1982, Primary changes of membrane currents during retention of associative learning, Science 215:693–695.PubMedCrossRefGoogle Scholar
  2. Amos, W. B., 1971, Reversible mechanochemical cycle in the contraction of Vorticella, Nature 229:127–128.PubMedCrossRefGoogle Scholar
  3. Amos, W. B., Routledge, L. M., and Yew, F. F., 1975, Calcium binding proteins in a vorticellid organelle, J. Cell Sci. 19:203–211.PubMedGoogle Scholar
  4. Bannister, L. H., and Tatchell, E. C., 1968, Contractility and the fibre systems of Stentor coeruleus, J. Cell Sci. 3:295–308.PubMedGoogle Scholar
  5. Bannister, L. H., and Tatchell, E. C., 1972, Fine structure of the M fibres in Stentor before and after shortening, Exptl. Cell Res. 73:221–225.PubMedCrossRefGoogle Scholar
  6. Chang, J. J., 1960, Electrophysiological studies of a non-luminescent form of the dinoflagellate Noctiluca miliaris, J. Cell. Comp. Physiol. 56:33–42.PubMedCrossRefGoogle Scholar
  7. Chen, V. K., 1972, The electrophysiology of Stentor polymorphis: An approach to the study of behavior, University Microfilms: Ann Arbor, MI.Google Scholar
  8. Clark, A. M., 1946, The reactions of isolated parts of Spirostomum, J. exp. Biol. 22:88–94.PubMedGoogle Scholar
  9. Clark, C. G., and Cross, G. A. M., 1988, Small-subunit ribosomal RNA sequence from Naegleria gruben supports the polyphyletic origin of amoebas, Mol. Biol. Evol. 5:512–518.PubMedGoogle Scholar
  10. Corliss, J. O., 1979, The Ciliate Protozoa Characterization, Classification and Guide to Literature, 2nd ed., Pergamon Press, New York.Google Scholar
  11. de Peyer, J., and Machemer, H., 1978, Hyperpolarizing and depolarizing mechanoreceptor potentials in Stylonychia. J. Comp. Physiol. 127:255–266.CrossRefGoogle Scholar
  12. Deitmer, J. W., 1981, Voltage and time dependent characterization of the potassium mechanoreceptor current in the ciliate, Stylonychia, J. Comp. Physiol. 141:173–182.CrossRefGoogle Scholar
  13. Dunlap, K., 1977, Localization of calcium channels in Paramecium caudatum, J. Physiol. (Lond.) 271:119–133.Google Scholar
  14. Eckert, R., 1965a, Bioelectric control of bioluminescence in the dinoflagellate Noctiluca, Science 147:1140–1142.PubMedCrossRefGoogle Scholar
  15. Eckert, R., 1965b, Asynchronous flash initiation by a propagated triggering potential, Science 147:1142–1145.PubMedCrossRefGoogle Scholar
  16. Eckert, R., 1972, Bioelectric control of ciliary activity, Science 176:473481.CrossRefGoogle Scholar
  17. Eckert, R., and Naitoh, Y., 1970, Passive electrical properties of Paramecium and problems of ciliary coordination, J. Gen. Physiol. 55:467–483.PubMedCrossRefGoogle Scholar
  18. Eckert, R., Naitoh, Y., and Friedman, K., 1972, Sensory mechanisms in Paramecium. I. Two components of the electric response to mechanical stimulation of the anterior surface. J. exp. Biol. 56:683–694.PubMedGoogle Scholar
  19. Eckert, R., Naitoh, Y., and Machemer, H., 1976, Calcium in the bioelectric and motor functions of Paramecium, Symp. Soc. Exp. Biol. 30:233–255.Google Scholar
  20. Ettienne, E. M., 1970, Control of contractility in Spirostomum by dissociated Ca-++ions. J. Gen. Physiol. 56:168–179.PubMedCrossRefGoogle Scholar
  21. Fabczak, S., Korohoda, W., and Walczak, T., 1973, Studies on the electrical stimulation of contraction in Spirostomum. I. Conditions of the quantitative measurements, Cytobiol. 7:152–163.Google Scholar
  22. Febvre-Chevalier, C., Bilbaut, A., Bone, Q., and Febvre, J., 1986, Sodium-calcium action potential associated with contraction in the heliozoan Actinocoryne contractilis, J. exp. Biol. 122:177–192.Google Scholar
  23. Hawkes, R. B., and Holberton, D. V., 1974, Myonemal contraction of Spirostomum. I. Kinetics of contraction and relaxation, J. Cell Physiol. 84:225–236.PubMedCrossRefGoogle Scholar
  24. Hawkes, R. B., and Rahat, M., 1976, Contraction and volume reduction of the glycerolated Carchesium spasmoneme: Effects of alkali earth ions, Experientia 32:160–162.CrossRefGoogle Scholar
  25. Hisada, M., 1957, Membrane resting and action potentials from a protozoan, Noctiluca scintillons, J. Cell. Comp. Physiol. 50:57–71.CrossRefGoogle Scholar
  26. Hoffmann-Berling, H., 1958, Der Mechanismus eines neuen, von der Muskelkontraktion verschiedenen Kontraktionszyklus, Biochim. Biophys. Acta 27:247–255.PubMedCrossRefGoogle Scholar
  27. Huang, B., and Pitelka, D. R., 1973, The contractile process in the ciliate, Stentor coeruleus, J. Cell Biol. 57:704–728.PubMedCrossRefGoogle Scholar
  28. Jennings, H. S., 1906, Behavior of the Lower Organisms, Columbia University Press, New York.CrossRefGoogle Scholar
  29. Jones, A. R., Jahn, T. L., and Fonseca, J. R., 1970, Contraction of protoplasm III. Cinematographic analysis of the contraction of some heterotrichs, J. Cell. Physiol. 75:1–8.PubMedCrossRefGoogle Scholar
  30. Klein, M., and Kandel, E. R., 1980, Mechanism of calcium current modulation underlying presynsptic facilitation and behavioral sensitization in Aplysia, Proc. Natl. Acad. Sci. USA 77:6912–6916.PubMedCrossRefGoogle Scholar
  31. Klein, M., Shapiro, E., and Kandel, E. R., 1980, Synaptic plasticity and the modulation of the Ca+ + current, J. exp. Biol. 89:117–157.PubMedGoogle Scholar
  32. Kristensen, B. I., Nielsen, L. E., and Rostgaard, J., 1974, Variations in myoneme birefringence in relation to length changes in Stentor coerulus, Exptl. Cell Res. 85:127–135.PubMedCrossRefGoogle Scholar
  33. Kung, C., and Naitoh, Y., 1973, Calcium-induced ciliary reversal in the extracted models of “pawn”, a behavioral mutant of Paramecium, Science 179:195–196.PubMedCrossRefGoogle Scholar
  34. Levine, L., 1956, Contractility of glycerated Vorticellae, Biol. Bull. 111:319.Google Scholar
  35. Machemer, H., and Ogura, A., 1979, Ionic conductances of membranes of ciliated and deciliated Paramecium, J. Physiol. (Lond.) 296:49–60.Google Scholar
  36. Moreton, R. B., and Amos, W. B., 1979, Electrical recording from the contractile ciliate Zoothamnium geniculatum Ayrton, J. exp. Biol. 83:159–167.Google Scholar
  37. Naitoh, Y., and Kaneko, H., 1972, Reactivated triton-extracted models of Paramecium: Modification of ciliary movement by calcium ions, Science 176:523–524.CrossRefGoogle Scholar
  38. Nielsen, L. E., 1975, High-speed cinematographic analysis of electrically-induced contraction in Stentor coeruleus, Comp. Biochem. Physiol. 50:463–468.CrossRefGoogle Scholar
  39. Ochiai, T., Asai, H., and Fukui, K., 1979, Hystersis of contraction-extension cycle of glycerinated Vorticella, J. Protozool. 26:420–425.Google Scholar
  40. Pellmar, T. C., 1981, Transmitter control of voltage-dependent currents, Life Sci. 28:2199–2205.CrossRefGoogle Scholar
  41. Reynierse, J. H., and Walsh, G. L., 1967, Behavior modification in the protozoan Stentor re-examined, Psychol. Rec. 17:161–165.Google Scholar
  42. Roy, G., 1972, A simple electronic analog of the squid axon membrane: The NEUROFET, IEEE Trans. Biomed. Eng. 19:60–63.PubMedCrossRefGoogle Scholar
  43. Satow, Y., Murphy, A. D., and Kung, C., 1983, The ionic basis of the depolarizing mechanoreceptor potential of Paramecium tetraurelia, J. exp. Biol. 103:253–264.Google Scholar
  44. Shiono, H., Hara, R., and Asai, H., 1980, Spontaneous membrane potential changes associated with the zooid and vacuolar contractions in Vorticella convallaria, J. Protozool. 27:83–87.Google Scholar
  45. Siegelbaum, S. A., Camardo, J. S., and Kandel, E. R., 1982, Serotonin and cyclic AMP close single K+ channels in Aplysia sensory neurons, Nature 299:413–417.PubMedCrossRefGoogle Scholar
  46. Sleigh, M. A., 1970, Some factors affecting the excitation of contraction in Spirostomum, Acta Protozool. 7:335–352.Google Scholar
  47. Small, E. B., and Lynn, D. H., 1985, Phylum ciliophora Doflein, 1901, in: An Illustrated Guide to Protozoa (J. J. Lee, S. H. Hulner, and E. C. Bovee, eds.), Soc. of Protozool., Lawrence, Kansas.Google Scholar
  48. Thompson, R. F., and Spencer, W. A., 1966, Habituation: A model phenomenon for the study of neuronal substrates of behavior, Psychol. Rev. 73:1643.Google Scholar
  49. Townes, M. M., 1978, The participation of ionic strength and pH in the contraction induced in Vorticella by calcium and magnesium, Comp. Biochem. Physiol. 61A:555–558.CrossRefGoogle Scholar
  50. Wood, D. C., 1970a, Parametric studies of the response decrement produced by mechanical stimuli in the protozoan, Stentor coeruleus, J. Neurobiol. 1:345–360.CrossRefGoogle Scholar
  51. Wood, D. C., 1970b, Electrophysiological studies of the protozoan, Stentor coeruleus, J. Neurobiol. 1:363–377.PubMedCrossRefGoogle Scholar
  52. Wood, D. C., 1971, Electrophysiological correlates of the response decrement produced by repeated mechanical stimuli in the protozoan, Stentor coeruleus, J. Neurobiol. 2:1–11.CrossRefGoogle Scholar
  53. Wood, D. C., 1972, Generalization of habituation between different receptor surfaces of Stentor, Physiol. Behav. 9:161–165.PubMedCrossRefGoogle Scholar
  54. Wood, D. C., 1973, Stimulus specific habituation in a protozoan, Physiol. Behav. 11:349–354.PubMedCrossRefGoogle Scholar
  55. Wood, D. C., 1976, Action spectrum and electrophysiological responses correlated with the Photophobic response of Stentor coeruleus, Photochem. Photobiol. 24:261–266.PubMedCrossRefGoogle Scholar
  56. Wood, D. C., 1982, Membrane permeabilities determining resting, action, and mechanoreceptor potentials in Stentor coeruleus, J. Comp. Physiol. 146:537–550.CrossRefGoogle Scholar
  57. Wood, D. C., 1988a, Habituation in Stentor. A response-dependent process, J. Neurosci. 8:2248–2253.PubMedGoogle Scholar
  58. Wood, D. C., 1988b, Habituation in Stentor. Produced by mechanoreceptor channel modification, J. Neurosci. 8:2254–2258.PubMedGoogle Scholar
  59. Yamada, K., and Asai, H., 1982, Extraction and some properties of the proteins, Spastin B., from the spasmoneme of Carchesium polypinium, J. Biochem. 91:1187–1195.PubMedGoogle Scholar
  60. Yamada-Horiuchi, K., and Asai, H., 1985, Partial purification of the Ca++-binding proteins from the spasmoneme of Carchesium, Comp. Biochem. Physiol. 81B:409–413.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • David C. Wood
    • 1
  1. 1.Department of Behavioral NeurosciencesUniversity of PittsburghPittsburghUSA

Personalised recommendations