Intercellular Junctions in Ctenophore Integument

  • Mari-Luz Hernandez-Nicaise
  • Ghislain Nicaise
  • Thomas S. Reese
Chapter
Part of the NATO ASI Series book series (NSSA, volume 188)

Abstract

The ctenophoran integument consists basically of a single-layered epidermis which covers the entire body, including appendages such as the tentacular apparatus, the lobes and auricles, and Unes the stomodeal cavity (generally referred to as the gastric cavity). This integument is always devoid of any cuticle or hard secretion, but is permanently covered by a film of mucus. It rests on a gelatinous mesoglea, which is an unusual connective tissue devoid of collagen and elastin fibers (Franc et al., 1976), and harboring mesenchymal cells and numerous true muscle cells. The mesoglea may be considered as the internal milieu of the ctenophore; it is fed and oxygenated by a system of gastrovascular channels, which may be very elaborate in large species. Franc (1972) demonstrated that specialized ciliated cells, located in the canal walls and grouped in ciliated rosettes, regulated the relative ionic and osmotic composition of the mesoglea.

Keywords

Tight Junction Ciliated Cell Septate Junction Unfixed Tissue Apical Junction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anctil, M., 1985, Ultrastructure of the luminescent system of the ctenophore Mnemiopsis leidyi, Cell Tissue Res. 242:333–340.CrossRefGoogle Scholar
  2. Anderson, P. A. V., 1980, Epithelial conduction: its properties and functions, Prog. Neurobiol. 15:161–203.PubMedCrossRefGoogle Scholar
  3. Anderson, P. A. V., 1985, Physiology of a bidirectional, excitatory, chemical synapse, J. Neurophysiol. 53:821–835.PubMedGoogle Scholar
  4. Bullock, T. H., and Horridge, G. A., 1965, Structure and Function in the Nervous Systems of Invertebrates. 8; Coelenterata and Ctenophora, W. H. Freeman, San Francisco and London.Google Scholar
  5. Filshie, B. K., and Flower, N. E., 1977, Junctional structures in Hydra, J. Cell Sci. 23:151–172.PubMedGoogle Scholar
  6. Flower, N. E., 1977, Invertebrate gap junctions, J. Cell Sci. 25:163–171.PubMedGoogle Scholar
  7. Franc, J. M., 1972, Activités des rosettes ciliées et leurs supports chez les Cténaires, Z. Zellforsch. 130:527–544.PubMedCrossRefGoogle Scholar
  8. Franc, J. M., 1985, La mésoglée des Cténaires; approches ultrastructurale, biochimique et métabolique, Doctoral diss. no. 8534, Univ. Claude Bernard-Lyon I, France.Google Scholar
  9. Franc, S., Franc, J. M., and Garrone, R., 1976, Fine structure and cellular origine of collagenous matrices in primitive animals: Porifera, Cnidaria and Ctenophora, in: Burkitt Lymphoma, Hemostasis and Intercellular Matrix. Frontiers of Matrix Biology, vol. 3, pp. 143–156 (A. M. Robert and L. Robert, eds.), Karger, Basel.Google Scholar
  10. Georges, D., 1979, Gap and tight junctions in Tunicates. Study in conventional and freeze-fracture techniques, Tissue Cell 11:781–792.PubMedCrossRefGoogle Scholar
  11. Green, C. R., 1984, Intercellular junctions, in: Biology of the Integument, Vol. I. Invertebrates, pp. 5–16 (J. Bereiter-Hahn, A. G. Matoltsy and K. S. Richards, ed.), Springer-Verlag, Berlin, Heidelberg.CrossRefGoogle Scholar
  12. Green, C. R., and P. R. Bergquist, 1982, Phylogenetic relationships within the invertebrata in relation to the structure of septate junctions and the development of “occluding” junctional types, J. Cell Sci. 53:279–305.Google Scholar
  13. Gumbiner, B., 1987, Structure, biochemistry, and assembly of epithelial tight junctions, Am. J. Physiol., 253C:749–758.Google Scholar
  14. Hernandez-Nicaise, M. L., 1968, Distribution et ultrastructure des synapses symétriques dans le système nerveux des Cténaires, C. R. Acad. Sci. 267:1731–1734.Google Scholar
  15. Hernandez-Nicaise, M. L., 1973a, Le système nerveux des Cténaires. I. Structure et ultrastructure des réseaux épithéliaux, Z. Zellforsch. 137:223–250.CrossRefGoogle Scholar
  16. Hernandez-Nicaise, M. L., 1973b, Le système nerveux des Cténaires. II. Les éléments nerveux intra-mésogléens chez les Béroidés et les Cydippidés, Z. Zellforsch. 143:117–133.CrossRefGoogle Scholar
  17. Hernandez-Nicaise, M. L., 1973c, The nervous system of Ctenophora. III. Ultrastructure of synapses, J. Neurocytol. 2:249–243.PubMedCrossRefGoogle Scholar
  18. Hernandez-Nicaise, M. L., 1974, Système nerveux et intégration chez les Cténaires. Etude ultrastructurale et comportementale, Doctoral diss. no. 278, Univ. Claude Bernard-Lyon I, France.Google Scholar
  19. Hernandez-Nicaise, M. L., 1989, Ctenophora, in: Microscopic Anatomy of Invertebrates (G. Harrisson ed.), A. R. Liss, New York.Google Scholar
  20. Hernandez-Nicaise, M. L., and Amsellem, J., 1980, Ultrastructure of the giant smooth muscle fiber of the Ctenophore Beroe ovata, J. Ultrastruct. Res. 72:151–158.PubMedCrossRefGoogle Scholar
  21. Hernandez-Nicaise, M. L., Nicaise, G., and Malaval, L., 1984, Giant smooth muscle fibers of the Ctenophore Mnemiopsis leidyi: ultrastructural study of in situ and isolated cells, Biol. Bull. 167:210–228.CrossRefGoogle Scholar
  22. Heuser, J. E., Reese, T. S., Dennis, M. J., Jan, V., Jan, L., and Evans, L., 1979, Synaptic vesicle exocytosis captured by quick freezing correlated with quantal transmiter release, J. Cell Biol. 81:275–300.PubMedCrossRefGoogle Scholar
  23. Hirokawa, N., 1982, The intramembrane structure of tight junctions: an experimental analysis of the single-fibril and two-fibrils models using the quick-freeze method, J. Ultrastruct. Res. 80:288–301.PubMedCrossRefGoogle Scholar
  24. Horridge, G. A., 1966, Pathways of co-ordination in ctenophores. In: The Cnidaria and their Evolution (W.J. Rees, ed.), Symp. Zool. Soc. Lond. 16:247–266.Google Scholar
  25. Kachar, B., and Reese, T. S., 1982, Evidence for the lipidic nature of tight junction strands, Nature 296:464–466.PubMedCrossRefGoogle Scholar
  26. Kachar, B., Christakis, N. A., Reese, T. S., and Lane, N. J., 1986, The intramembrane structure of septate junctions based on direct freezing, J. Cell Sci. 80:13–28.PubMedGoogle Scholar
  27. Kensler, R. W., Brink, P. R., and Dewey, M. M., 1977, The nexus of frog ventricle, J. Cell. Biol. 73:768–781.PubMedCrossRefGoogle Scholar
  28. Kensler, R. W., Brink, P. R. and Dewey, M. M., 1979, The septum of the lateral axon of the earthworm: a thin section and freeze-fracture study, J. Neurocytol. 8:565–590.PubMedCrossRefGoogle Scholar
  29. Lane, N. J., 1981, Tight junctions in arthropod tissues, Int. Rev. Cytol. 73:243–318.CrossRefGoogle Scholar
  30. Lane, N. J., Dallai, R., Burighel, P., and Martinucci, G. B., 1986, Tight and gap junctions in the intestinal tract of tunicates (Urochordata): a freeze-fracture study, J. Cell Sci. 84:1–17.PubMedGoogle Scholar
  31. Larsen, W. J., 1983, Biological implications of gap junction structure, distribution and composition: a review, Tissue Cell 15:645–671.PubMedCrossRefGoogle Scholar
  32. Mackie, G. O., 1984, Introduction to the diploblastic level, in: Biology of the Integument, Vol. I. Invertebrates, pp. 43–46 (J. Bereiter-Hahn, A. G. Matoltsy and K. S. Richards, eds.), Springer-Verlag, Berlin, Heidelberg.CrossRefGoogle Scholar
  33. Mazet, F., 1977, Freeze-fracture studies of gap junction in the developing and adult amphibian cardiac muscle, Dev. Biol. 60:139–152.PubMedCrossRefGoogle Scholar
  34. Perrachia, C., 1980, Structural correlates of gap junction permeation, Int. Rev. Cytol. 66:81–146.CrossRefGoogle Scholar
  35. Pinto da Silva, P., and Kachar, B., 1982, On tight-junction structure, Cell 28:441–450.PubMedCrossRefGoogle Scholar
  36. Satterlie, R. A., and Case, J. F., 1978, Gap junctions suggest epithelial conduction within the comb plates of the Ctenophore Pleurobrachia bachei, Cell Tissue Res. 193:87–91.PubMedCrossRefGoogle Scholar
  37. Schneeberger, E. E., and Lynch, R. D., 1984, Tight junctions. Their structure, composition and function, Circul. Res. 55:723–733.CrossRefGoogle Scholar
  38. Simionescu, M., Simionescu, N., and Palade, G. E., 1976, Segmental differentiations of cell junctions in the vascular epithelium. Arteries and veins, J. Cell Biol. 68:705–723.PubMedCrossRefGoogle Scholar
  39. Spray, D. C., and Bennett, M. V. L., 1985, Gap Junctions. Cold Spring Harbor Laboratory Press, New York.Google Scholar
  40. Staehelin, L. A., 1973, Further observations on the fine structure of freeze-cleaved tight junctions, J. Cell Sci. 13:763–786.PubMedCrossRefGoogle Scholar
  41. Stevenson B. R., Anderson, J. M., and Bullivant, S., 1988, The epithelial tight junction: structure, function and preliminary biochemical characterization, Mol. cell. Biochem. 83:129–145.PubMedCrossRefGoogle Scholar
  42. Tamm, S. L., 1982, Ctenophora, in: Electrical Conduction and Behaviour in “Simple” Invertebrates, pp. 266–358 (G. A. B. Shelton, ed.), Clarendon Press, Oxford.Google Scholar
  43. Taugner, R., Sonnhof, U., Richter, D. W., and Schiiler, A., 1978, Mixed (chemical and electrical) synapses on frog spinal motorneurones, Cell tiss. Res. 193:41–59.Google Scholar
  44. Van Deurs, B., and Luft, J. H., 1979, Effects of glutaraldehyde fixation on the structure of tight junctions. A quantitative freeze-fracture analysis, J. Ultrastruct. Res. 68:160–172.PubMedCrossRefGoogle Scholar
  45. Wood, R. L., 1977, The cell junctions of hydra as viewed by freeze-fracture replication, J. Ultrastruct. Res. 58:299–315.PubMedCrossRefGoogle Scholar
  46. Wood, R. L., and Kuda, A. M., 1980, Formation of junctions in regenerating Hydra: gap junctions, J. Ultrastruct Res. 73:350–360.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Mari-Luz Hernandez-Nicaise
    • 1
  • Ghislain Nicaise
    • 1
  • Thomas S. Reese
    • 2
  1. 1.Cytologie ExpérimentaleUniversité de NiceNiceFrance
  2. 2.Laboratory of NeurobiologyN.I.N.D.S., N.I.H.BethesdaUSA

Personalised recommendations