The Antiquity of Monoaminergic Neurotransmitters: Evidence from Cnidaria

  • Michel Anctil
Chapter
Part of the NATO ASI Series book series (NSSA, volume 188)

Abstract

When wrestling with the issue of the origin of nervous systems and their associated messenger molecules, conventional wisdom has historically dictated that one should look at coelenterates for experimental models (Robson, 1975; Anderson and Schwab, 1982). However, recent molecular approaches to constructing phytogenies suggest that Cnidaria evolved from a protist ancestor, along a line separate from that leading to other multicellular animals (Field et al., 1988). Regardless of the eventual “pedigree” of ancestral Cnidaria that may emerge from these analyses, it is still reasonable to view their nervous system as the most ancient, having evolved some 600 to 700 million years ago. The search for monoamine transmitters and their mechanisms of action in Cnidaria should be envisaged with that perspective in mind.

Keywords

Myoepithelial Cell Immunoreactive Neuron Rhythmic Contraction Monoaminergic System Bipolar Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anctil, M., 1987, Bioacthdty of FMRFamide and related peptides on a contractile system of the coelenterate Renilla köllikeri, J. Comp. Physiol. 157:31–38.Google Scholar
  2. Anctil, M., 1989, Modulation of a rhythmic activity by serotonin via cyclic AMP in the coelenterate Renilla köllikeri, J. Comp. Physiol., in press.Google Scholar
  3. Anctil, M., and Grimmelikhuijzen, C. J. P., 1989, Excitatory action of the native neuropeptide antho-RFamide on muscles in the pennatulid Renilla köllikeri, Gen. Pharmac. 20:381–384.CrossRefGoogle Scholar
  4. Anctil, M., Boulay, D., and LaRiviere, L., 1982, Monoaminergic mechanisms associated with control of luminescence and contractile activities in the coelenterate, Renilla köllikeri, J. Exp. Zool. 223:11–24.CrossRefGoogle Scholar
  5. Anctil, M., Germain, G., and LaRiviere, L., 1984, Catecholamines in the coelenterate Renilla köllikeri. Uptake and radioautographic localization, Cell. Tiss. Res. 238:69–80.Google Scholar
  6. Anderson, P. A. V., and Case, J. F., 1975, Electrical activity associated with bioluminescence and other colonial behavior in the pennatulid Renilla köllikeri, Biol. Bull. 149:80–95.CrossRefGoogle Scholar
  7. Anderson, P. A. V., and Schwab, W. E., 1982, Recent advances and model systems in coelenterate neurobiology, Progr. Neurobiol. 19:213–236.CrossRefGoogle Scholar
  8. Brizzi, G., and Blum, J. J., 1970, Effect of growth conditions on serotonin content of Tetrahymena pyriformis, J. Protozool. 17:553–555.PubMedGoogle Scholar
  9. Carlberg, M., 1983, Evidence of dopa in the nerves of sea anemones, J. Neural Transmission 57:75–84.CrossRefGoogle Scholar
  10. Carlberg, M., 1988, Localization and identification of catechol compounds in the ctenophore Mnemiopsis leidyi, Comp. Biochem. Physiol. 91C:69–74.Google Scholar
  11. Carlberg, M., and Rosengren, E., 1985, Biochemical basis for adrenergic neurotransmission in coelenterates, J. Comp. Physiol. B155:251–255.Google Scholar
  12. Chung, J. M., Spencer, A. N., Gahm, K. H., 1989, Dopamine in tissues of the hydrozoan jellyfish Polyorchis pennicilatus as revealed by HPLC and GC/MS. J. Comp. Physiol. B. 159:173–181.CrossRefGoogle Scholar
  13. Dahl, E., Falck, B., von Mecklengurg, C., and Myhrberg, H., 1963, An adrenergic nervous system in sea anemones, Quart. J. Micr. Sci. 104:531–534.Google Scholar
  14. Dahlstrom, A., and Carlsson, A., 1986, Making visible the invisible, in: Discoveries in Pharmacology, Vol. 3: Pharmacological Methods, Receptors and Chemotherapy, pp. 97–125, (M. J. Parnham and J. Bruinvels, eds.), Elsevier, Amsterdam.Google Scholar
  15. David, C. N., 1983, Stem cell proliferation and differentiation in hydra, in: Stem Cells, their Identification and Characterization, pp. 12–27 (C. S. Potten, ed.), Churchill-Livingstone, Edinburgh-London.Google Scholar
  16. De Waele, J.-P., Anctil, M., and Carlberg, M., 1987, Biogenic catecholamines in the cnidarian Renilla köllikeri: radioenzymatic and chromatographic detection, Can. J. Zool. 65:2458–2465.CrossRefGoogle Scholar
  17. Edwards, N. C., Thomas, M. B., Long. B. A., and Amyotte, S. J., 1987, Catecholamines induce metamorphosis in the hydrozoan Halocordyle disticha but not in Hydractinia echinata, Rouxs Arch. Dev. Biol. 196:381–384.CrossRefGoogle Scholar
  18. Elofsson, R., and Carlberg, M., 1989, Gland cells in the tentacles of the jellyfish Cyanea lamarcki reactive with an antibody against 5-hydroxytryptamine, Cell Tiss. Res. 255:419–422.Google Scholar
  19. Elofsson, R., Falck, B., Lindvall, O., and Myhrberg, H., 1977, Evidence for new catecholamines or related amino acids in some invertebrate sensory neurons, Cell. Tiss. Res. 182:25–536.Google Scholar
  20. Falck, B., Hillarp, N. A., Thieme, G., and Thorp, A., 1962, Fluorescence of catecholamines and related compounds condensed with formaldehyde, J. Histochem. Cytochem. 10:348–354.CrossRefGoogle Scholar
  21. Field, K. G., Olsen, G. J., Lane, D. J., Giovannoni, S. J., Ghiselin, M. T., Raff, E. C., Pace, N. R., Raff, R. A., 1988, Molecular phytogeny of the animal kingdom, Science 239:748–753.PubMedCrossRefGoogle Scholar
  22. Geffard, M., Kan, O., Onteniente, B., Seguela, P., Le Moal, M., and Delaage, M., 1984, Antibodies to dopamine: radioimmunological study of specificity in relation to immunocytochemistry, J. Neurochem. 42:1593–1599.PubMedCrossRefGoogle Scholar
  23. Germain, G., Anctil, M., 1988, Luminescent activity and ultrastructural characterization of photocytes dissociated from the coelenterate Renilla köllikeri, Tissue and Cell 20:701–720.PubMedCrossRefGoogle Scholar
  24. Grimmelikhuijzen, C. J. P., Dockray, G. J., and Schot, L. P. C., 1982, FMRFamide-like immunoreactivity in the nervous system of hydra, Histochemistry 73:499–508.PubMedCrossRefGoogle Scholar
  25. Hamon, M., Gozlan, H., El Mestikawi, S., Emerit, M. B., Cossery, J. M., and Lutz, O., 1988, Biochemical properties of central serotonin receptors, in: Neuronal Serotonin, pp. 393–422 (N. N. Osborne and M. Hamon, eds.), John Wiley & Sons, New York, London.Google Scholar
  26. Hanai, K., and Kitajima, M., 1984, Two types of surface amine receptors modulating the feeding response in Hydra japonica: the depressing action of dopamine and related amines, Chem. Senses 9:355–367.CrossRefGoogle Scholar
  27. Hille, B., 1984, Ionic Channels of Excitable Membranes, Sinauer Associates, Sunderland, MA.Google Scholar
  28. Janakidevi, K., Dewey, V. C., and Kidder, G. W., 1966a, The biosynthesis of catecholamines in two genera of Protozoa, J. Biol. Chem. 241:2576–2578.PubMedGoogle Scholar
  29. Janakidevi, K., Tewey, V. C., and Kidder, G. W., 1966b, Serotonin in Protozoa, Arch. Biochem. Biophys. 113:758–759.PubMedCrossRefGoogle Scholar
  30. Juorio, A. V., and Killick, S. W., 1973, The distribution of monoamines and some of their acid metabolites in the posterior salivary glands and viscera of some cephalopods, Comp. Biochem. Physiol. 44A:1059–1067.CrossRefGoogle Scholar
  31. Klemm, N., 1985, The distribution of biogenic monoamines in invertebrates, in: Neurobiology. Current Comparative Approaches, pp. 280–296 (R. Gilles and J. Balthazart, eds.), Springer-Verlag, Berlin-Heidelberg.Google Scholar
  32. Lesh-Laurie, G. E., 1988, Coelenterate endocrinology, in: Invertebrate Endocrinology, Vol. 2: Endocrinology of Selected Invertebrate Types, pp. 3–29 (H. Laufer and R. G. H. Downer, eds.), Alan R. Liss, New York.Google Scholar
  33. Mackie, G. O., 1984, Introduction to the diploblastic level, in: Biology of the Integument, Vol. 1: Invertebrates, pp. 43–46 (J. Bereiter-Hahn, A. G. Matoltsy and K. S. Richards, eds.), Springer-Verlag, Heidelberg.CrossRefGoogle Scholar
  34. Martin, S. M., and Spencer, A. N., 1983, Neurotransmitters in coelenterates, Comp. Biochem. Physiol. 74C:1–14.Google Scholar
  35. Matus, A. I., 1971, Histochemical localization of biogenic amines in the posterior salivary glands of octopods, Tissue and Cell 3:389–394.PubMedCrossRefGoogle Scholar
  36. Ness, J. C., and Morse, D. E., 1985a, Regulation of galactokinase gene expression in Tetrahymena thermophila. I. Intracellular catecholamine control of galactokinase expression, J. Biol. Chem. 260:10001–10012.PubMedGoogle Scholar
  37. Ness, J. C., and Morse, D. E., 1985b, Regulation of galactokinase gene expression in Tetrahymena thermophila. II. Identification of 3,4-dihydroxyphenylalanine as a primary effector of adrenergic control of galactokinase expression, J. Biol. Chem. 260:10013–10018.PubMedGoogle Scholar
  38. Osborne, N. N., Hiripi, L., and Neuhoff, V., 1975, The in vitro uptake of biogenic amines by snail (Helix pomatia) nervous tissue, Biochem. Pharmacol. 24:2141–2148.PubMedCrossRefGoogle Scholar
  39. Paton, D. M., 1976, Characteristics of uptake of noradrenaline by adrenergic neurons, in: The Mechanism of Neuronal and Extraneuronal Transport of Catecholamines, pp. 49–66 (D. M. Paton, ed.), Raven Press, New York.Google Scholar
  40. Pazos, A., Engel, G., and Palacios, J. M., 1985, Beta-adrenoceptor blocking agents recognize a subpopulation of serotonin receptors in brain, Brain Res. 343:403–408.PubMedCrossRefGoogle Scholar
  41. Reuter, M., Wikgren, M., and Lehtonen, M., 1986, Immunocytochemical demonstration of 5-HT-like and FMRFamide-like substances in whole mounts of Microstomum lineare (Turbellaria), Cell. Tiss. Res. 246:7–12.Google Scholar
  42. Robson, E. A., 1975, The nervous system of coelenterates, in: Simple Nervous Systems, pp. 169–209 (P. N. R. Usherwood and D. R. Newth, ed.), Edward Arnold, London.Google Scholar
  43. Rosenzweig, K., and Kindler, S. H., 1972, Epinephrine and serotonin activation of adenylate cyclase from Tetrahymena pyriformis, FEBS Lett. 25:221–223.CrossRefGoogle Scholar
  44. Ross, D. M., 1960a, The effects of ions and drugs on neuromuscular preparations of sea anemones. I. On preparations of the column of Calliactis and Metridium, J. exp. Biol. 37:732–752.Google Scholar
  45. Ross, D. M., 1960b, The effects of ions and drugs on neuromuscular preparations of sea anemones. II. On sphincter preparations of Calliactis and Metridium, J. exp. Biol. 37:753–774.Google Scholar
  46. Satterlie, R. A., Anderson, P. A. V., and Case, J. F., 1980, Colonial coordination in anthozoans: Pennatulacea, Mar. Behav. Physiol. 7:25–46.CrossRefGoogle Scholar
  47. Soghomonian, J.-J., Beaudet, A., and Descarries, L., 1988, Ultrastructural relationships of central serotonin neurons, in: Neuronal Serotonin, pp. 57–92 (N. N. Osborne and M. Hamon, ed.), John Wiley & Sons, New York, London.Google Scholar
  48. Sukhdeo, S. C., and Sukhdeo, M. V. K., 1988, Immunohistochemical and electrochemical detection of serotonin in the nervous system of Fasciola hepatica, a parasitic flatworm, Brain Res. 463:57–62.PubMedCrossRefGoogle Scholar
  49. Takeuchi, Y., 1988, Distribution of serotonin neurons in the mammalian brain, in: Neuronal Serotonin, pp. 25–56 (N. N. Osborne and M. Hamon, eds.), John Wiley & Sons, New York, London.Google Scholar
  50. Umbriaco, D., Anctil, M., and Descarries, L., 1989, Serotonin-immunoreactive neurons in the cnidarian Renilla köllikeri, J. Comp. Neurol, in press.Google Scholar
  51. Umbriaco, D., and Anctil, M., 1988, Immunohistochemical evidence of catecholaminergic cells in the coelenterate Renilla köllikeri, Bull. Can. Soc. Zool. 19(2):23.Google Scholar
  52. Vaughan, P. F. T., 1988, Amine transmitters and their associated second messenger systems, in: Comparative Invertebrate Neurochemistry, pp. 124–174 (G. G. Lunt and R. W. Olsen, ed.), Cornell Univ. Press, Ithaca.CrossRefGoogle Scholar
  53. Venturini, G., Silei, O., Palladini, G., Carolei, A., and Margotta, V., 1984, Aminergic neurotransmitters and adenylate cyclase in Hydra, Comp. Biochem. Physiol. 78C:345–348.Google Scholar
  54. Verhofstad, A. A. J., Steinbusch, H. W. M., Joosten, H. W. J., Penke, B., Varga, J., and Goldstein, M., 1983, Immunocytochemical localization of noradrenaline, adrenaline and serotonin, in: Immunohistochemistry. Practical Applications in Pathology and Biology, pp. 143–168 (J. M. Polak and S. Van Noorden, eds.), Wright PBS, Bristol-London.Google Scholar
  55. Walker, R. J., 1984, 5-Hydroxytryptamine in invertebrates, Comp. Biochem. Physiol. 79C:231–235.Google Scholar
  56. Webb, R. A., Mizukawa, K., 1985, Serotonin-like immunoreactivity in the cestode Hymenolepis diminuta, J. Comp. Neurol 234:431–440.PubMedCrossRefGoogle Scholar
  57. Wilson, E. B., 1883, The development of Renilla, Phil Trans. R. Soc. Lond., B174:723–815.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Michel Anctil
    • 1
  1. 1.Département de Sciences Biologiques and Centre de Recherche en Sciences NeurologiquesUniversité de MontréalMontréalCanada

Personalised recommendations