Noninvasive Measurement of Cardiac Functions

  • Michael F. Wilson
  • William R. Lovallo
  • Gwendolyn A. Pincomb
Part of the The Springer Series in Behavioral Psychophysiology and Medicine book series (SSBP)

Abstract

The preceding chapter summarized the physiology of the cardiovascular system and suggested avenues, especially neural and hormonal mechanisms, through which behavioral or psychological factors might influence its regulation. The focus of this chapter will be to describe methodologies for observing changes in cardiac function which are particularly suitable for behavioral studies in humans due to their low risk, noninvasiveness, and for some methodologies, their unobtrusiveness.

Keywords

Cardiac Output Cardiac Cycle Nuclear Cardiology Ventricular Volume American Heart Journal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Suggested Readings

Cardiac Function

  1. Berne, R. M., & Levy, M. N. (1972). Cardiovascular physiology (pp. 178–182). St. Louis: Mosby.Google Scholar
  2. Jones, N. L. (1982). Mixed venous PCO2 and the measurement of cardiac output. In Clinical exercise testing. Philadelphia: Saunders.Google Scholar
  3. Lewis, R. P., Rittgers, S., Forester, W. F., & Boudoulas, H. (1977). A critical review of the systolic time intervals. Circulation, 56, 146.PubMedCrossRefGoogle Scholar
  4. Rushmer, R. F., Watson, N., Harding, D., & Baker, D. (1963). Effects of acute coronary occlusion upon the performance of right and left ventricles in intact unanesthetized dogs. American Heart Journal, 66, 522.PubMedCrossRefGoogle Scholar
  5. Sagawa, K., Sanagawa, K., & Naughan, W. L. (1985). Ventricular end-systolic pressure-volume relations. In H. J. Levine & W. H. Gaasch (Eds.), The ventricle: Basic and clinical aspects. The Hague: Nijhoff.Google Scholar
  6. Wilson, M. F., Sung, B. H., Thadani, U., Brackett, D. J., & Burow, R. D. (1985). Efficacy of myocardial contractility index to discriminate coronary disease. Circulation, 72, III103.Google Scholar

Electrocardiography

  1. Goldberger, A. L., & Goldberger, E. (1981). Clinical electrocardiography: A simplified approach (2nd ed., pp. 3–34). St. Louis: Mosby.Google Scholar
  2. Goldberger, E. (1953). Unipolar lead electrocardiography. Philadelphia: Lea & Febiger.Google Scholar
  3. Manion, C. V., Whitsett, T. L., & Wilson, M. F. (1980). Applicability of correcting the QT interval for heart rate. American Heart Journal, 99, 678.PubMedCrossRefGoogle Scholar
  4. Rushmer, R. F. & Guntheroth, W. G. (1976). Electrical activity of the heart. In R. F. Rushmer (Ed.), Cardiovascular dynamics (4th ed., pp. 281–350). Philadelphia: Saunders.Google Scholar
  5. Wilson, F. N., Johnston, F. D., Rosenbaum, F. F., Erlanger, H., Kossmann, C. E., Hecht, H., Cotrim, N., De Oliveira, R. M., Scarsi, R., & Barker, P. S. (1944). The precordial electrocardiogram. American Heart Journal, 27, 19.CrossRefGoogle Scholar

Echocardiography

  1. Baker, D. W., Rubenstein, S. A., & Lorch, G. S. (1977). Pulsed Doppler echocardiography: Principles and applications. American Journal of Medicine, 63, 69.PubMedCrossRefGoogle Scholar
  2. Cohn, P. F., & Wynne, J. (1982). Diagnostic methods in clinical cardiology. Boston: Little, Brown.Google Scholar
  3. Feigenbaum, H. (1976). Echocardiography (2nd ed.). Philadelphia: Lea & Febiger.Google Scholar
  4. Hatle, L., & Angelsen, B. (1985). Doppler ultrasound in cardiology (2nd ed.). Philadelphia: Lea & Febiger.Google Scholar
  5. Kisslo, J., Adams, D., & Mark, D. B. (1986). Basic Doppler echocardiography. Edinburgh: Churchill Livingstone.Google Scholar
  6. Rushmer, R. F., Baker, D. W., Johnson, W. L., & Strandness, D. E. (1967). Clinical applications of a transcutaneous ultrasonic flow detector. Journal of the American Medical Association, 199, 104.CrossRefGoogle Scholar
  7. Teague, S. M. (1986). Measurement of ventricular function using Doppler ultrasound. In J. Kisslo, D. Adams, & D. B. Mark (Eds.), Basic Doppler echocardiography (pp. 147–157). Edinburgh: Churchill Livingstone.Google Scholar
  8. White, D. N. (1982). Johann Christian Doppler and his effect: A brief history. Ultrasound in Medicine and Biology, 8, 583.PubMedCrossRefGoogle Scholar

Nuclear Cardiac Imaging

  1. Borer, J. S., Bacharach, S. L., Green, M. V., Kent, K. M., Epstein, S. E., Johnston, G. S., & Mack, B. (1977). Realtime radionuclide cineangiography in the noninvasive evaluation of global and regional left ventricular function at rest and during exercise in patients with coronary artery disease. New England Journal of Medicine, 296, 840.CrossRefGoogle Scholar
  2. Iskandrian, A. S. (1987). Nuclear cardiac imaging: Principles and applications. Philadelphia: Davis.Google Scholar
  3. Pitt, B., & Strauss, H. W. (1977). Evaluation of ventricular function by radioisotopic techniques. New England Journal of Medicine, 296, 1097.PubMedCrossRefGoogle Scholar
  4. Sung, B. H., Wilson, M. F., Robinson, C., Thadani, U., Lovallo, W. R. (1988). Mechanisms of myocardial ischemia induced by epinephine: Comparison with exercise-induced ischemia. Psychosomatic Medicine, 50, 381–393.PubMedGoogle Scholar
  5. Wilson, M. F., Burow, R. d., Brackett, D. J., Sung, B. H., Thadani, U., & Schechter, E. (1982). Quantitative cardiac blood pool scintigraphic evaluation of responses to epinephrine infusion and exercise in normals and coronary disease. American Journal of Cardiology, 49, 992.CrossRefGoogle Scholar

Impedance Cardiography

  1. Lamberts, R., Visser, K. R., & Zijlstra, W. G. (1984). Impedance cardiography. Assen. The Netherlands: Van Gorcum.Google Scholar
  2. McKinney, M. E., Buell, J. C., & Eliot, R. S. (1984). Sex differences in transthoracic impedance: Evaluation of effects on calculated stroke volume index. Aviation, space, and Environmental Medicine, 55, 893–895.PubMedGoogle Scholar
  3. Miller, J. C., & Horvath, S. M. (1978). Impedance cardiography. Psychophysiology, 15, 80.PubMedCrossRefGoogle Scholar
  4. Nijboer, J. (1970). Electrical impedance plethysmography (2nd ed.). Springfield, IL: Thomas.Google Scholar

References

  1. Anger, H. O. (1959). Scintillation camera. Review of Scientific Instruments, 29, 23.Google Scholar
  2. Baker, D. W., Rubenstein, S. A., & Lorch, G. S. (1977). Pulsed Doppler echocardiography: Principles and applications. American Journal of Medicine, 63, 69.PubMedCrossRefGoogle Scholar
  3. Berne, R. M., & Levy, M. N. (1972). Cardiovascular physiology (pp. 178–182). St. Louis: Mosby.Google Scholar
  4. Borer, J. S., Bacharach, S. L., Green, M. V., Kent, K. M., Epstein, S. E., Johnston, G. S., & Mack, B. (1977). Realtime radionuclide cineangiography in the noninvasive evaluation of global and regional left ventricular function at rest and during exercise in patients with coronary artery disease. New England Journal of Medicine, 296, 840.CrossRefGoogle Scholar
  5. Burow, R. D., Wilson, M. F., Heath, P. W., Corn, C. R., Amil, A., & Thadani, U. (1982). Influence of attenuation on radionuclide stroke volume determinations. Journal of Nuclear Medicine, 25(9), 781.Google Scholar
  6. Cohn, P. F., & Wynne, J. (1982). Diagnostic methods in clinical cardiology. Boston: Little, Brown.Google Scholar
  7. Ebert, T. J., Eckberg, D. L., Vetrovic, G. M., & Cowley, M. J. (1984). Impedance cardiograms reliably estimate beat-by-beat changes in left ventricular stroke volume in humans. Cardiovascular Research, 18, 354.PubMedCrossRefGoogle Scholar
  8. Ebert, T. J., DeMeersman, R. E., Seip, R. L., Snead, D. B., & Schelhorn, J. J. (1988). Signal-averaged impedance cardiograms during continuous exercise in man. Unpublished manuscript, VA Medical Center, Milwaukee, WI.Google Scholar
  9. Feigenbaum, H. (1972). Clinical applications of echocardiography. Progress in Cardiovascular Diseases, 14, 531.PubMedCrossRefGoogle Scholar
  10. Feigenbaum, H. (1976). Echocardiography (2nd ed.). Philadelphia: Lea & Febiger.Google Scholar
  11. Geddes, L. E., & Baker, L. E. (1972). Thoracic impedance changes following saline injection into right and left ventricles. Journal of Applied Psychology, 33, 278–281.Google Scholar
  12. Goldberger, A. L., & Goldberger, E. (1981). Clinical electrocardiography: A simplified approach (2nd ed., pp. 3–34). St. Louis: Mosby.Google Scholar
  13. Goldberger, E. (1953). Unipolar lead electrocardiography. Philadelphia: Lea & Febiger.Google Scholar
  14. Hatle, L., & Angelsen, B. (1985). Doppler ultrasound in cardiology (2nd ed.). Philadelphia: Lea & Febiger.Google Scholar
  15. Heather, L. W. (1969). A comparison of cardiac output values by the impedance cardiograph and dye dilution techniques in cardiac patients. In W. G. Kubicek, D. A. Witsoe, R. P. Patterson, & A. H. L. From (Eds.), Development and evaluation of an impedance cardiographic system to measure cardiac output and other cardiac parameters (NASA-CR 101956) (pp. 247–258). Houston: National Aeronautics and Space Administration.Google Scholar
  16. Iskandrian, A. S. (1987). Nuclear cardiac imaging: Principles and applications. Philadelphia: Davis.Google Scholar
  17. Jones, N. L. (1982). Mixed venous PCO2 and the measurement of cardiac output. In Clinical exercise testing. Philadelphia: Saunders.Google Scholar
  18. Kisslo, J., Adams, D., & Mark, D. B. (Eds.). (1986). Basic Doppler echocardiography. Edinburgh: Churchill Livingstone.Google Scholar
  19. Konstam, M. A., Wynne, J. (1982). Radionuclide ventriculography. In P. F. Cohn & J. Wynne (Eds.), Diagnostic methods in clinical cardiology (pp. 165–198). Boston: Little, Brown.Google Scholar
  20. Kubicek, W. G., Kottke, F. J., Ramos, M. V., Patterson, R. P., Witsoe, D. A., Labree, J. W., Remole, W. Layman, T. E., Schwening, H., & Garamella, J. T. (1974). The Minnesota impedance cardiograph—theory and applications. Biomedicai Engineering, 9, 410–416.Google Scholar
  21. Lamberts, R., Visser, K. R., & Zijlstra, W. G. (1984). Impedance cardiography. Assen, The Netherlands: Van Gorcum.Google Scholar
  22. Lewis, R. P., Rittgers, S., Forester, W. F., & Boudoulas, H. (1977). A critical review of the systolic time intervals. Circulation, 56, 146.PubMedCrossRefGoogle Scholar
  23. Lovallo, W. R., Wilson, M. F., Pincomb, G. A., Edwards, G. L., Tompkins, P., & Brackett, D. J. (1985). Activation patterns to aversive stimulation in man: Passive exposure versus effort to control. Psychophysiology, 22, 283.PubMedCrossRefGoogle Scholar
  24. Lovallo, W. R., Pincomb, G. A., & Wilson, M. F. (1986). Predicting response to a reaction time task: Heart rate reactivity compared with type A behavior. Psychophysiology, 23, 648.PubMedCrossRefGoogle Scholar
  25. Manion, C. V., Whitsett, T. L., & Wilson, M. F. (1980). Applicability of correcting the QT interval for heart rate. American Heart Journal, 99(5), 678.PubMedCrossRefGoogle Scholar
  26. Marshall, R. C., Berger, H. J., Reduto, L. A., Gottschalk, A., & Zaret, B. L. (1978). Variability in sequential measures of left ventricular performance assessed with radionuclide angiography. American Journal of Cardiology, 41, 531.PubMedCrossRefGoogle Scholar
  27. Matsuda, Y., Yamada, S., Kurogani, H., Sato, H., Maeda, K., & Fukuzaki, H. (1978). Assessment of left ventricular performance in man with impedance cardiography. Japanese Circulation Journal, 42, 945.PubMedCrossRefGoogle Scholar
  28. McKinney, M. E., Buell, J. C., & Eliot, R. S. (1984). Sex differences in transthoracic impedance: Evaluation of effects on calculated stroke volume index. Aviation, Space, and Environmental Medicine, 55, 893–895.PubMedGoogle Scholar
  29. McKinney, M. E., Miner, M. H., Ruddel, H., Mcllvain, H. E., Witte, H., Buell, J. C., Eliot, R. S., & Grant, L. B. (1985). The standardized mental stress test protocol: Testretest reliability and comparison with ambulatory blood pressure monitoring. Psychophysiology, 22, 453.PubMedCrossRefGoogle Scholar
  30. Miller, J. C., & Horvath, S. M. (1978). Impedance cardiography. Psychophysiology, 15, 80.PubMedCrossRefGoogle Scholar
  31. Muzi, M., Ebert, T. J., Tristani, F. E., Jeutter, D. C., Barney, J. A., & Smith, J. J. (1985). Determination of cardiac output using ensemble-averaged impedance cardiograms. Journal of Applied Physiology, 58, 200.PubMedGoogle Scholar
  32. Muzi, M., Jeutter, D. C., & Smith, J. J. (1986). Computer-automated impedance-derived cardiac indexes. IEEE Transactions on Biomedicai Engineering, BME-31, 42.CrossRefGoogle Scholar
  33. Nijboer, J. (1970). Electrical impedance plethysmography (2nd ed.). Springfield, IL: Thomas.Google Scholar
  34. Nivatpumin, T., Katz, S., & Scheuer, J. (1979). Peak left ventricular systolic pressure/end-systolic volume ratio: A sensitive detector of left ventricular disease. American Journal of Cardiology, 43, 969.PubMedCrossRefGoogle Scholar
  35. Patterson, R. P. (1965). Cardiac output determinations using impedance plethysmography. Unpublished doctoral dissertation, University of Minnesota, Minneapolis.Google Scholar
  36. Pincomb, G. A., Lovallo, W. R., Passey, R. L., Whitsett, T. L., Silverstein, S. M., & Wilson, M. F. (1985). Effects of caffeine on vascular resistance, cardiac output, and myocar-dial contractility in young men. American Journal of Cardiology, 56, 119.PubMedCrossRefGoogle Scholar
  37. Pitt, B., & Strauss, H. W. (1977). Evaluation of ventricular function by radioisotopic techniques. New England Journal of Medicine, 296, 1097.PubMedCrossRefGoogle Scholar
  38. Qureshi, S., Wagner, H. N., Alderson, P. O., Housholder, D. F., Douglas, K. H., Lotter, M. G., Nickoloff, E. L., Tanobe, M., & Knowles, L. G. (1978). Evaluation of left-ventricular function in normal persons and patients with heart disease. Journal of Nuclear Medicine, 19, 135.PubMedGoogle Scholar
  39. Rergch, S. K., Scholz, P. M., Sabiston, D. C., & Jones, R. H. (1980). Effects of exercise training on left ventricular function in normal subjects: A longitudinal study by radionuclide angiography. American Journal of Cardiology, 45, 244.CrossRefGoogle Scholar
  40. Rushmer, R. F., & Guntheroth, W. G. (1976). Electrical activity of the heart. In R. F. Rushmer (Ed.), Cardiovascular dynamics (4th ed. pp. 281–350). Philadelphia: Saunders.Google Scholar
  41. Rushmer, R. F., Watson, N., Harding, D., & Baker, D. (1963). Effects of acute coronary occlusion upon the performance of right and left ventricles in intact unanesthetized dogs. American Heart Journal, 66, 522.PubMedCrossRefGoogle Scholar
  42. Rushmer, R. F., Baker, D. W., Johnson, W. L., & Strandness, D. E. (1967). Clinical applications of a transcutaneous ultrasonic flow detector. Journal of the American Medical Association, 199, 104.CrossRefGoogle Scholar
  43. Sagawa, K., Sanagawa, K., & Naughan, W. L. (1985). Ventricular end-systolic pressure-volume relations. In H. J. Levine & W. H. Gaasch (Eds.), The ventricle: Basic and clinical aspects (pp. 79–103). The Hague: Nijhoff.Google Scholar
  44. Siegel, J. H., Fabian, M., Lankov, C., Levine, M., Cole, A., & Nahmad, M. (1970). Clinical and experimental use of thoracic impedance plethysmography in quantifying myocardial contractility. Surgery, 67, 907.PubMedGoogle Scholar
  45. Sorenson, J. A. (1980). Single photon emission computed tomography, and other selected computer topics. Proceedings, 10th Annual Symposium Society of Nuclear Medicine. New York: Society of Nuclear Medicine.Google Scholar
  46. Sramek, B. B. (1981). Noninvasive technique for measurement of cardiac output by means of electrical impedance. Proceedings of the 5th International Conference on Electrical Bioimpedance (pp. 39-42). Tokyo.Google Scholar
  47. Strauss, H. W., Pitt, B., & James, Jr., A. E. (1974). Cardiovascular nuclear medicine. St. Louis: Mosby.Google Scholar
  48. Sung, B. H., Robinson, C., Thadani, U., Lee, R., & Wilson, M. F. (1986). Plasma catecholamine concentrations at onset of myocardial ischemia during supine bicycle exercise. Federation Proceedings, 45(3), 281.Google Scholar
  49. Sung, B. H., Wilson, M. F., Robinson, C., Thadani, U., & Lovallo, W. R. (1988). Mechanisms of myocardial ischemia induced by epinephrine: Comparison with exercise-induced ischemia. Psychosomatic Medicine, 50, 381–393.PubMedGoogle Scholar
  50. Teague, S. M. (1986). Measurement of ventricular function using Doppler ultrasound. In J. Kisslo, D. Adams, & D. B. Mark (Eds.) Basic Doppler echocardiography (pp. 147–157). Edinburgh: Churchill Livingston.Google Scholar
  51. Wagner, H. N., Jr., Rigo, P., Baxter, R. H., Alderson, P. O., Douglas, K. H., & Housholder, D. F. (1979). Monitoring ventricular function at rest and during exercise with a nonimaging nuclear detector. American Journal of Cardiology, 43(5), 975.PubMedCrossRefGoogle Scholar
  52. White, D. N. (1982). Johann Christian Doppler and his effect: A brief history. Ultrasound in Medicine and Biology, 8, 583.PubMedCrossRefGoogle Scholar
  53. Willerson, J. T. (1981). Nuclear cardiology: Cardiovascular clinics. A. N. Brest (Ed.). Philadelphia: Davis.Google Scholar
  54. Wilson, F. N., Johnston, F. D., Rosenbaum, F. F., Erlanger, H., Kossmann, C. E., Hecht, H., Cotrim, N., De Oliveira, R. M., Scarsi, R., & Barker, P. S. (1944). The precordial electrocardiogram. American Heart Journal, 27, 19.CrossRefGoogle Scholar
  55. Wilson, M. F., Burow, R. D., Brackett, D. J., Sung, B. H., Thadani, U., & Schechter, E. (1982). Quantitative cardiac blood pool scintigraphic evaluation of responses to epinephrine infusion and exercise in normals and coronary disease. American Journal of Cardiology, 49, 992.CrossRefGoogle Scholar
  56. Wilson, M. F., Brackett, D. J., Thorsen, C. K., McDaniel, K., Schaefer, C. F., Wilson, M. L., & Folkers, K. (1984). Treatment of dilated cardiomyopathy by coenzyme Q10: Evaluation of benefits by nuclear cardiography. In K. Folkers & Y. Yamamura (Eds.), Biomedicai and clinical aspects of coenzyme Q (Vol. 4, pp. 403–416). Amsterdam: Elsevier.Google Scholar
  57. Wilson, M. F., Sung, B. H., Thadani, U., Brackett, D. J., & Burow, R. D. (1985). Efficacy of myocardial contractility index to discriminate coronary disease. Circulation, 72(4), III–103.Google Scholar
  58. Wilson, M. F., Sung, B. H., Robinson, C., Thadani, U., & Brackett, D. J. (1986). Dose-response effects of epinephrine on hemodynamics and left ventricular function in man with coronary artery disease (CAD). Federation Proceedings, 45(3), 196.Google Scholar
  59. Wilson, M. F., Sung, B. H., Pincomb, G. A., & Lovallo, W. R. (in press). Simultaneous measurement of stroke volume by impedance and nuclear ventriculography: Comparison at rest and during exercise. Annals of Biomedicai Engineering.Google Scholar
  60. Winer, B. J. (1971). Statistical principles in experimental design (2nd ed.). New York: McGraw-Hill.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Michael F. Wilson
    • 1
  • William R. Lovallo
    • 2
  • Gwendolyn A. Pincomb
    • 2
  1. 1.ACOS for ResearchVeterans Administration Medical Center and University of Oklahoma Health Sciences CenterOklahoma CityUSA
  2. 2.Behavioral Sciences LaboratoriesVeterans Administration Medical Center and University of Oklahoma Health Sciences CenterOklahoma CityUSA

Personalised recommendations