Central Representation of Arousal

  • Peter R. Laming

Abstract

There are two types of mechanism by which the brain modulates its own responsiveness, those of arousal and attention. Comparative studies suggest that in fish and amphibia the nondirectional arousal component of the orientation reaction (OR) predominates over the directed attention component, the latter of which is more advanced in mammals. Fish and amphibia are therefore useful subjects for the study of arousal. Associated with behavioral arousal in these animals is an increase in amplitude and apparent synchrony of high frequency waveforms in the electroencephalogram (EEG). A model is presented of how such waveforms may sensitize neurons and thus increase responsiveness to subsequent stimuli. Also associated with neuronal responses to sensory experience are sustained potential shifts (SPSs) of probably glial origin. These SPSs may represent a change in the environment of neurons deeper in the sensory processing pathway which would increase the probability of these neurons responding to activation of that pathway. Hyperactivity of the brain, associated with seizures is also correlated with high levels of measures of arousal and clinically with a gliosis. Fundamental studies on the neuronal sensitization which occurs during arousal may also reveal the causes of neuronal hyperactivity in clinical disorders like epilepsy.

Keywords

Glial Cell Optic Tectum Orientation Reaction Bufo Bufo Cerebellar Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson P, Anderson SA (1968) Physiological basis of the alpha rhythm. Meredith Corporation, New YorkGoogle Scholar
  2. Ayala GF (1983) The paroxysmal depolarising shift. Prog Clin Bio! Res 124: 15–21Google Scholar
  3. Barry RJ (1984) Preliminary processes in OR elicitation. Acta Physiol55: 109–142Google Scholar
  4. Barth DS, Engle WSJ, Beatty J (1984) Neuromagnetic evidence of spatially distributed sources underlying epileptiform spikes in the human brain. Science 223: 293–296PubMedCrossRefGoogle Scholar
  5. Bauer H, Nimberger G (1981) Concept identification as a function of preceding negative or positive spontaneous shifts in slow brain potentials. Psychophysiol 18(4): 466–469Google Scholar
  6. Birukow G (1951) Ermüdung and Umstimmung bei Gleichgewichtsreaktionen der Amphibien. Verhandl Deutsch Zool Ges 16: 144–150Google Scholar
  7. Borchers H-W (1982) Correlation between behavior patterns and single unit responses from the optic tectum in the freely moving toad (Bufo bufo). In: Trappe! R, Ricciardi L, Pask G (eds) Progress in biorybernetics research, VoL 9. McGraw-Hill, London, pp 109–117Google Scholar
  8. Bowman CL, Kimelberg HK (1984) Excitatory amino acids directly depolarise rat brain astrocytes in primary culture. Nature 311: 656–659PubMedCrossRefGoogle Scholar
  9. Bridger WH, Reiser MF (1959) Psychophysiological studies of the neonate: an approach toward the methodological and theoretical problems involved. Psychosomatic Med 21: 165–176Google Scholar
  10. Buno W, Velluti R, Handler P, Garcia-Austt E (1966) Neural control of the cochlear input in the wakeful-free guinea pig. Physiol Behavl: 23–35Google Scholar
  11. Caspers H, Speckmann EJ (1969) DC potential shifts in paroxysmal states. In: Jaspers HH, Ward AA, Pope A (eds) Basic mechanisms of the epilepsies Little Brown and Co, Boston, pp 375–388Google Scholar
  12. Chalazonitis N (1978) Some intrinsic and synaptic properties of abnormal oscillators. In: Chalazonitis N, Boisson M (eds) Abnormal neuronal discharges. Raven Press, New York, pp 115–132Google Scholar
  13. Chapman AA (1985) Cerebral energy metabolism and seizures. In: Pedley TA, Meldrum BS (eds) Recent advances in epilepsy IL Churchill Livingstone, Edinburgh London New York, pp 19–63Google Scholar
  14. Chen RC, Huang YH, How SW (1986) Systemic penicillin as an experimental model of epilepsy. Pap Neurol 93: 533–540Google Scholar
  15. Cohen MW (1970) The contribution of glial cells to surface recordings from the optic nerve of an amphibian. J Physiol 210: 565–580PubMedGoogle Scholar
  16. Coles JA, Orkand RK (1983) Modification of potassium movement through the retina of the drone (Apis mellifera) by glial uptake. J Physiol 340: 157–174PubMedGoogle Scholar
  17. Creutzfeldt OD, Houchin J (1974) Neuronal basis of EEG waves. In: Remond A (ed) Handbook ofelectroencephalography and clinical neurophysiology, Vol. 2. Elsevier, Amsterdam, pp 5–55Google Scholar
  18. Creutzfeldt OD, Kuhn V, Benevento LA (1974) An intracellular analysis of visual cortical neurones to moving stimuli: responses in a cooperative neuronal network. Fxp Brain Res 21: 251–274Google Scholar
  19. Crispino L (1983) Modification of responses from specific sensory systems in midbrain by cerebellar stimulation: experiments in a teleost fish. JNeurophysio149(1): 3–15Google Scholar
  20. Crispino L, Bullock TH (1984) Cerebellum mediates modality-specific modulation of sensory responses of midbrain and forebrain in rat. ProcNatl Acad Sci USA 81: 2917–1920CrossRefGoogle Scholar
  21. Degtyar EN (1963) Conditions required for the formation of a CR system at various functional levels of children’s nervous activity. Zhur Vyssei New Deiate113: 631–637Google Scholar
  22. Durkovic RG, Cohen DH (1966) DC potential activity in a nervous system lacking neocortex the pigeon telencephalon. Anat Record 154: 341Google Scholar
  23. Durkovic RG, Cohen DH (1968) Spontaneous, evoked and defensively conditioned steady potential changes in the pigeon telencephalon. Electroenceph Clin Neurophysiol24: 474–481PubMedCrossRefGoogle Scholar
  24. Eason RG, Dudley LM (1971) Physiological and behavioral indicants of activation. Psychophysiol 7(2): 223–232Google Scholar
  25. Eason RG, Harter MR, White CT (1969) Effects of attention and arousal on visually evoked cortical potentials and reaction time in man. Physiol Behav4: 283–289Google Scholar
  26. Elul R (1972) The genesis of the EEG. In: Pfeiffer CC, Smythies JR (eds) International review of neurobiology, Vol. 15. Academic Press, New York London, pp 228–272.Google Scholar
  27. Enger PS (1957) The electroencephalogram of the codfish. Acta Physiol Scand 39: 55–72PubMedCrossRefGoogle Scholar
  28. Ewert J-P (1980) Neuroethology: an introduction to the neurophysiological fundamentals of behavior. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  29. Ewert J-P (1984) Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York London, pp 247–416Google Scholar
  30. Faught E, Lee SI (1984) Pattern-reversal visual evoked potentials in photosensitive epilepsy. Electroenceph Clin Neurophysio 159: 125–133CrossRefGoogle Scholar
  31. Finkenstädt T (1987) Verschaltung, Interaktion und Funktion visuell beeinfluBbarer Hirngebiete bei Amphibien. Habilitation Thesis, Univ of KasselGoogle Scholar
  32. Finkenstädt T, Ewert J-P (1985) Glucose utilization in the toad’s brain during anesthesia and stimulation of the ascending reticular arousal system: a 14C-2-deoxyglucose study. Naturwissenschaften 72: 161–162Google Scholar
  33. Fox SS, Norman RJ (1968) Functional congruence: an index of neural homogeneity and a new measure of brain activity. Science 159: 1257–1259PubMedCrossRefGoogle Scholar
  34. Frost JD, Gol A (1966) Computer determination of relationships between EEG activity and single unit discharges in isolated cerebral cortex. Erp Neuro11: 4 506–519Google Scholar
  35. Futamachi KJ, Pedley TA (1976) Glial cells and extracellular potassium: their relationship in mammalian cortex. Brain Res 109: 311–322PubMedCrossRefGoogle Scholar
  36. Garcia-Austt E, Bogacz J, Venzulli A (1964) Effects of attention and inattention upon visual evoked response. Electroencephal Clin Neurophysiol 17: 136–143CrossRefGoogle Scholar
  37. Gardner-Medwin AR (1983) Analysis of potassium dynamics in mammalian brain tissue. J Physiol 335: 393–426PubMedGoogle Scholar
  38. Gilbert PW, Hodgson ES, Mathewson RF (1964) Electroencephalogram of sharks. Science 145: 949–951PubMedCrossRefGoogle Scholar
  39. Godet R, Bert J, Collomb H (1964) Apparition de la reaction d’eveil telencephalique chez Protopterus annectens et cycle biologique. Comptes Rendus des Seances de la Societe de Biologie 158: 146–149Google Scholar
  40. Gola M (1978) A model for the production of slow potential waves and associated spiking in molluscan neurons. In: Chalazonitis N, Boisson M (eds) Abnormal neuronal dischargeand Raven Press, New York, pp 243–262Google Scholar
  41. Gonzalez-Lima F, Scheich H (1984) Functional activation of the auditory system of the rat produced by arousing reticular stimulation: a 2-deoxyglucose study. Brain Res 299: 201–214PubMedCrossRefGoogle Scholar
  42. Goodman DA, Weinberger NM (1969) An electroencephalographic study of Necturus maculosus (mud puppy). Physiol Zoo142: 398–410Google Scholar
  43. Greenwood RS, Takato M, Goldring S (1981) Potassium activity and changes in glial and neuronal membrane potentials during initiation and spread of after discharges in cerebral cortex of cat. Brain Res 218: 279–298PubMedCrossRefGoogle Scholar
  44. Grossman RG (1978) Glial-neural interaction studies with intracellular injection of ions into cortical glia. In: Schoffeniels E, Franck G, Hertz L, Tower DB (eds) Dynamic properties of glial cells. Pergamon Press, New York, pp. 105–113Google Scholar
  45. Gumnit RJ (1961) The distribution of direct current responses evoked by sounds in the auditory cortex of the cat. Electroenceph Clin Neurophysiol 13: 889–895CrossRefGoogle Scholar
  46. Gutnick MJ, Connors BW, Ransom BR (1981) Dye coupling between glial cells in the guinea pig neocortical slice. Brain Res 213: 486–492PubMedCrossRefGoogle Scholar
  47. Hamberger A, Cotman CW, Sellstrom A, Weiler CT (1978) Glutamine, glial cells and their relationship to transmitter glutamate. In: Schoffeniels E, Franck G, Hertz L, Tower DB (eds) Dynamic properties of glial cells. Pergamon Press, Oxford New York, pp 163–172Google Scholar
  48. Hara TJ, Ileda K, Gorbrian A (1965) Electroencephalographic studies of homing salmon. Science 149: 884885Google Scholar
  49. Harris AB (1975) Cortical neuroglia in experimental epilepsy. Exp Neurol49: 691–715Google Scholar
  50. Hatton JD, Ellisman MH (1984) Orthoganal arrays are redistributed in the membranes of astroglia from alumina-induced epileptic foci. Epilepsia 25 (2): 145–151PubMedCrossRefGoogle Scholar
  51. Heinemann U, Dietzel I (1984) Extracellular potassium concentration in chronic alumina cream foci of cats. JNeurophysiol 52: 421–434.Google Scholar
  52. Heinemann U, Konnerth A, Lux HD (1981) Stimulation induced changes in extracellular free calcium in normal cortex and chronic alumina cream foci of cats. Brain Res 213: 246–250PubMedCrossRefGoogle Scholar
  53. Hertz L (1965) Possible role of neuroglia: a potassium-mediated neuronal-neuroglial-neuronal impulse transmission system. Nature 4989: 1091–1094CrossRefGoogle Scholar
  54. Hobson JA (1967) Respiration and EEG synchronisation in the frog. Nature 213: 988–989CrossRefGoogle Scholar
  55. Hodgkin AL, Keynes RD (1955) Active transport of cations in giant axons from Sepia and Loligo. J Physiology (London) 128: 28–60Google Scholar
  56. Hubbard JI, Llinas R, Quastel DMJ (1969) Electrophysiological analysis of synaptic transmission. Monographs of the physiological society. Edward Arnold, London, p 372Google Scholar
  57. Jakobsson E, Guttmann R (1981) Continuous stimulation and threshold of axons. In: Adelman WJ, Goldman DE (eds) The biophysical approach to excitable systems. Plenum-Press, New York London, pp 197–213CrossRefGoogle Scholar
  58. Jane JA, Smirnov GD, Jasper HH (1962) Effects of distraction upon simultaneous auditory and visual evoked potentials. Electroenceph Clin Neurophysiol 14: 344–357PubMedCrossRefGoogle Scholar
  59. Jasper HH (1960) Unspecific thalamocortical relations. In: Field JJ, Magoun HW, Hall VE (eds) Handbook of physiology, section L neurophysiology, Vol IL American Physiological Society, Washington, pp 1307–1321Google Scholar
  60. Johnston D, Brown TH (1981) Giant synaptic potential hypothesis for epileptiform activity. Science 211: 294–297PubMedCrossRefGoogle Scholar
  61. Kaplan H (1981) Effects of fostering on seizure activity in the Mongolian gerbil. Developmental Psychobiol 14 (6): 565–570CrossRefGoogle Scholar
  62. Karmanova IG, Belekhova MG, Tchurnosov, EU (1971) Specifics of behavioral and electrographic patterns of sleep and wakefulness in reptiles. Sechenov Physiol J USSR 57: 504–511Google Scholar
  63. Kelly JP, Van Essen DC (1974) Cell structures and function in the visual cortex of the cat. J Physiol 238: 515–547PubMedGoogle Scholar
  64. King JS (1966) A comparative investigation of neuroglia in representative vertebrates. J Morphol119: 435466Google Scholar
  65. Klein M (1963) Etude polygraphique et phylogenique des etats de sommeil. Bosc, Lyons FranceGoogle Scholar
  66. Kohler W, Wegener J (1955) Currents of the human auditory cortex. J Celi Comp Physiol Supp! 1: 25–54CrossRefGoogle Scholar
  67. Koroleva VI, Bures J (1983) Cortical penicillin focus as a generator of repetitive spike-triggered waves of spreading depression in rats. Exp Brain Res 51: 291–297PubMedCrossRefGoogle Scholar
  68. Kostopoulos G, Avoli M (1983) Enhanced response of cortical neurons to thalamic stimuli precedes the appearance of spike and wave discharges in feline generalized penicillin epilepsy. Brain Res 278: 207–217PubMedCrossRefGoogle Scholar
  69. Kuffler SW (1967) Neuroglial cells: physiological properties and a potassium-mediated effect of neuronal activity on the glial membrane potential. ProcRoyal SocB 168: 1–21CrossRefGoogle Scholar
  70. Kuffler SW, Nicholls JG, Orkand RK (1966) Physiological properties of glial cells in the central nervous system of amphibia. JNeurophysio l29: 768–787Google Scholar
  71. Lacey JI, Lacey BC (1974) On heart rate responses and behavior. a reply to Elliot. J Personal Soc Psycho! 30: 1–18CrossRefGoogle Scholar
  72. Laming PR (1980) Electroencephalographic studies on arousal in the goldfish (Carassius auratus). J Comp Physiol Psycho! 94: 238–254CrossRefGoogle Scholar
  73. Laming PR (1981) The physiological basis of alert behaviour in fish. In: Laming PR (ed) Brain mechanisms of behaviour in lower vertebrates. Cambridge Univ Press, Cambridge England, pp 203–224Google Scholar
  74. Laming PR (1982) Electroencephalographic correlates of behavior in the anurans Bufo regularis and Rana temporada. Behav Neural Bio! 34: 296–306CrossRefGoogle Scholar
  75. Laming PR (1983) Relationship between the responses of visual units, EEGs, and slow potential shifts in the tectum of the toad, Bufo bufa In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum-Press, New York London, pp 595–603Google Scholar
  76. Laming PR (1987) Behavioural arousal and its habituation in the squirrel fish (Holocentrus tutus); the role of the telencephalon. Behav Neural Bio1 47: 80–104CrossRefGoogle Scholar
  77. Laming PR, Brooks M (1985) Effects of visual, chemical, and tactile stimuli on the auditory evoked response of the teleost Rutilus radius. Comp Biochem Physio 182A(3): 667–673Google Scholar
  78. Laming PR, Ebbesson SOE (1984) Arousal and fright responses and their habituation in the slippery dick, Halichoeres bivittatus Erperientia 40: 767–769Google Scholar
  79. Laming PR, Ewert J-P (1983) The effects of pretectal lesions on neuronal, sustained potential shift, and electroencephalographic responses of the toad tectum to presentation of a visual stimulus. Comp Biochem Physiol 76A(2): 247–252Google Scholar
  80. Laming PR, Ewert J-P (1984) Visual unit, EEG, and sustained potential shift responses to biologically significant stimuli in the brain of toads (Bufo bufo). J Comp Physiol 154: 89–101CrossRefGoogle Scholar
  81. Laming PR, Hornby P (1981) The effect of unilateral telencephalic lesions on behavioral arousal and its habituation in the roach, Rutilus rutilus. Behav Neural Biol 33: 59–65CrossRefGoogle Scholar
  82. Laming PR, McKee M (1981) Deficits in habituation of cardiac arousal responses incurred by telencephalic ablation in goldfish (Carassius auratus) and their relation to other telencephalic functions. J Comp Physiol Psycho! 95(3): 460467Google Scholar
  83. Laming PR, Savage GE (1978) Flow changes in visceral blood vessels of the chub (Leuciscus cephalus) during behavioural arousal. Comp Biochem Physiol A 59 (3): 291–293Google Scholar
  84. Laming PR, Savage GE (1980) Physiological changes observed in the goldfish (Carassius auratus) during behavioural arousal and fright. Behav Neural Bio! 29: 255–275CrossRefGoogle Scholar
  85. Laming PR, Savage GE (1981) Seasonal differences in brain activity and responsiveness shown by the goldfish ( Carassius auratus ). Behav Neural Bio! 32: 386–389Google Scholar
  86. Laming PR, Borchers HW, Ewert J-P (1984a) Visual unit, EEG, and sustained potential shift responses in the brains of toads (Bufo bufo) during alert and defensive behavior. Physiol Behav32: 463–468Google Scholar
  87. Laming PR, Ewert J-P, Borchers HW (1984b) The effects of telencephalic ablation on unit, EEG, and sustained potential shift responses of the toad tectum to a visual stimulus. Behav Neurosci 98 (1): 118–124PubMedCrossRefGoogle Scholar
  88. Laming PR, Rooney DJ, Ferguson J (1987) Epileptogenesis is associated with heightened arousal responses in fish. Physiol Behav 40: 617–624PubMedCrossRefGoogle Scholar
  89. Laming PR, Elwood RW, Best PM (1988) Arousal, attention, and epilepsy in the gerbil. Behav Neural Bio! (in press)Google Scholar
  90. Lansing RW, Lindsley DB, Schwartz E (1959) Reaction time and EEG activation under alerted and non-alerted conditions. JExp Psycho! 58: 1–7Google Scholar
  91. Laufer M, Verzeano M (1967) Periodic activity in the visual system of the cat. Vision Res7: 215–219 Lehmann HJ (1963) Praparoxymale Weckreaktionen bei pyknoleptischen Absenzen. Arch Psychiat Nervenkr204: 417–426Google Scholar
  92. Lickey ME, Fox SS (1966) Localisation and habituation of sensory evoked DC responses in cat cortex. Exp Neurol 15: 437. 454Google Scholar
  93. Livingstone MS, Hubel DH (1981) Effects of sleep and arousal on the processing of visual information in the cat. Nature 291: 554–561PubMedCrossRefGoogle Scholar
  94. London ID (1954) Research on sensory interaction in the Soviet Union. Psychol Bull 51: 531–568CrossRefGoogle Scholar
  95. Loveless NE (1979) Event-related slow potentials of the brain as expressions of orienting function. In: Kimmel HD, von Olst EM, Orlebeke JF (eds) The orienting reflex in humans Eribaum, Hillsdale, pp 77–100Google Scholar
  96. Maltzman I (1979) Orienting reflexes and significance: a reply to O’Gorman. Psychophysiol 16: 274–282CrossRefGoogle Scholar
  97. Marston JH, Chang MC (1965) The breeding management and reproductive physiology of the Mongolian gerbil (Mesiones unguiculatus). Lab Anim Care 15: 34–48PubMedGoogle Scholar
  98. Maxson SC, Fine MD, Ginsburg BE, Konieck DL (1983) A mutant for spontaneous seizures in C57BLI10Bg mice. Epilepsia 24: 15–24PubMedCrossRefGoogle Scholar
  99. McIntyre DC, Chew GL (1986) Power-spectral analysis of electroencephalographic activity in kindled rats. Exp Neurol92: 261–266Google Scholar
  100. Mihaly A, Joo F, Szente M (1983) Neuropathological alterations in the neocortex of rats subject to focal aminopyridene seizures. Acta Neuropathol 61: 85–94PubMedCrossRefGoogle Scholar
  101. Mori S, Mitarai G, Takagi S, Usui S (1981) Electroencephalographic analysis of activities in the optic tectum of unrestrained carp. Behav Brain Res2: 335–346Google Scholar
  102. Morrell F (1960) Micro-electrode and steady potential studies suggesting a dendritic locus of closure. Electroenceph Clin Neurophysiol 13: 1553–1593Google Scholar
  103. Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation of the EEG. Electroenceph Clin Neurophysiol 1: 455–473PubMedGoogle Scholar
  104. Mouritzen-Dam A (1982) Hippocampal neuron loss in epilepsy and after experimental seizures. Acta Neural Scand 66: 601–642CrossRefGoogle Scholar
  105. Niedermeyer E (1972) The generalized epilepsies Thomas, SpringfieldGoogle Scholar
  106. Niedermeyer E (1982) Epileptic seizure disorders. In: Niedermeyer E, Lopes da Silva F (eds) Electroencephalography. Urban and Schwarzenberg, Baltimore Munich, pp. 339–428Google Scholar
  107. Oatman LC (1971) Role of visual attention on auditory evoked potential in unanaesthetised cats. Exp Neurol 32: 341–356PubMedCrossRefGoogle Scholar
  108. Obraztsova LF, Pomazanskaya LN, Stelmakh VA, Troshikhin VA (1958) On the orientation reaction to neutral and signal stimuli in dogs and rabbits in ontogenesis. In: Lynn R (ed) Attention, arousal and the orientation reaction. Pergamon Press, Oxford 1966, p 118Google Scholar
  109. Orkand RK, Nicholls JG, Kuffler SW (1966) The effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. JNeurophysiol 29: 788–806Google Scholar
  110. Papini M, Pasquinelli A, Armellini M, Orlandi D (1984) Alertness and incidence of seizures in patients with Lennox-Gastaut syndrome. Epilepsia 25 (2): 161–167PubMedCrossRefGoogle Scholar
  111. Pavlov IP (1927) Conditioned reflexes. Oxford Univ Press, LondonGoogle Scholar
  112. Peters TJ, Vonderahe AR (1954) Electroencephalographic studies, induced seizures, and their modification by phenobarbitol, dilantin, and phenurone in the salamanders Trituras viridescens and Ambystoma tigrinum. Electroenceph Clin Neurophysiol 6: 253–260CrossRefGoogle Scholar
  113. Petsche H, Pockberger H, Rappelsberger P (1984) On the search for the sources of the electroencephalogram. Neurosci 11 (1): 1–27CrossRefGoogle Scholar
  114. Petsche H, Prohaska O, Rappelsberger P, Vollmer R, Kaiser A (1974). Cortical seizure patterns in multidimensional view. The information content of equipotential maps. Epilepsia 15: 439–463PubMedCrossRefGoogle Scholar
  115. Picker S, Pieper CF, Goldring S (1981) Glial membrane potentials and their relationship to [K+]o in man and guinea pig. JNeurosurg 55: 347–363CrossRefGoogle Scholar
  116. Piddington RW (1971a) Central control of auditory input in the goldfish. I: Effects of shocks to the midbrain. JExp Biol 55: 569–584Google Scholar
  117. Piddington RW (1971b) Central control of auditory input in the goldfish. II: Evidence of action in the free swimming animal. J Exp Bio! 55: 585–610Google Scholar
  118. Pope A (1978) Neuroglia: quantitative aspects. In: Schoffeniels E, Franck G, Hertz L, Tower DB (eds) Dynamic properties ofgu ai cells. Pergamon Press, Oxford New York, pp 13–20Google Scholar
  119. Posner MI, Snyder CRR (1975) Facilitation and inhibition in the processing of signals. In: Rabbitt PMA, Dornic S (eds) Attention and performance V. Academic Press, London New York, pp 669–682Google Scholar
  120. Pribram KH, McGuinness D (1975) Arousal activation and effort in the control of attention. Psycho! Review82: 116–149Google Scholar
  121. Quastel JH (1978) Cerebral glutamate-glutamine interrelations in vivo and in vitra In: Schoffeniels E, Franck G, Hertz I., Tower DB (eds) Dynamic properties of glial cells. Pergamon Press, New York, pp 153–162Google Scholar
  122. Quesney LF (1984) Pathophysiology of generalised photosensitive epilepsy in the cat. Epilepsia 25 (1): 6169Google Scholar
  123. Rakic P (1984) Emergence of neuronal and glial cell lineages in primate brain. In: Black IB (ed) Cellular and molecular biology of neuronal development Plenum Press, New York, pp 29–50Google Scholar
  124. Rakic P, Stensaas LI, Sayre EP, Sidman RL (1974) Computer aided three-dimensional reconstruction and quantitative analysis of cells from serial electron microscope montages of fetal monkey brain. Nature 250: 31–34PubMedCrossRefGoogle Scholar
  125. Ransom BR, Goldring S (1973a) Ionic determinants of membrane potential of cells presumed to be glia in cerebral cortex of cat. J Neurophysiol 36: 855–868Google Scholar
  126. Ransom BR, Goldring S (1973b) Slow depolarisation in cells presumed to be glia in cerebral cortex of cat. J Neurophysiol 36: 869–878Google Scholar
  127. Ransom BR, Goldring S (1973c) Slow hyperpolarisation in cells presumed to be glia in cerebral cortex of cat. J Neurophysiol 36: 879–892Google Scholar
  128. Rappelsberger P, Petsche H, Vollmer R, Lapins R (1979) Rhythmicity in seizure patterns; intracortical aspects. In: Speckmann EI, Caspers H (eds) Origin of cerebral field potentials Georg Thieme, Stuttgart, pp 80–97Google Scholar
  129. Rassmussen T (1983) Characteristics of a pure culture of frontal lobe epilepsy. Epilepsia 24: 482–493CrossRefGoogle Scholar
  130. Reynolds R, Herschkowitz N (1986) Selective uptake of neuroactive amino acids by both oligodendrocytes and astrocytes in primary dissociated culture: a possible role for oligodendrocytes in neurotransmitter metabolism. Brain Res 371: 253–266PubMedCrossRefGoogle Scholar
  131. Rizzolatti G (1983) Mechanisms of selective attention in mammals. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 261–297CrossRefGoogle Scholar
  132. Rogozea R, Flores Ciocoiu V, Constantinovici A (1983) Habituation of the orienting reaction in patients with epileptogenic cerebral tumours. Bio! Psychol16: 65–84Google Scholar
  133. Roitback AI, Fanardjhyan VV, Melkonyan DS, Melkonyan AA (1982) Glial origin of slow negative potential of the cortical direct response. Neirofiziologiia 14 (1): 76–84Google Scholar
  134. Rooney D, Laming PR (1986) Cardiac and ventilatory arousal responses and their habituation in goldfish: effects of intensity of the eliciting stimulus. Physiol Behav37: 11–14Google Scholar
  135. Rowland V (1968) Cortical steady potential (direct current potential) in reinforcement and learning. In: Stellar E, Sprague JM (eds) Progress in physiological psychology, Volt Academic Press, New York, pp 2–77Google Scholar
  136. Rowland V, Goldstone M (1963) Appetitively conditioned and drive-related bioelectric baseline shift in cat cortex. Electroenceph Clin Neurophysio1 15: 474–485CrossRefGoogle Scholar
  137. Rowland V, Bradley H, School P, Deutschman D (1967) Cortical steady potential shifts in conditioning. Cond Reflex 2: 3–22Google Scholar
  138. Rutecki DA, Lebeda FJ, Johnston D (1985) Epileptiform activity induced by changes in extracellular potassium in hippocampus. J Neurophysio1 54(5): 1363–1374Google Scholar
  139. Savage GE 1971. Behavioural effects of electrical stimulation of the telencephalon of the goldfish (Carassins auratus). Anim Behav 19: 661–8.PubMedCrossRefGoogle Scholar
  140. Schade JP (1959) Bilateral synchrony and arousal in EEG of fish. Electroenceph Clin Neurophysiol 11: 613–614Google Scholar
  141. Schade JP, Weiler IJ (1959) EEG patterns of the goldfish. JExp Bio! 36: 435–52Google Scholar
  142. Schousboe A (1978) Glutamate, GABA, and taurine in cultured, normal glia cells. In: Schoffeniels E, Franck G, Hertz L, Tower DB (eds) Dynamic properties of glia celland Pergamon Press, Oxford New York, pp 173–183Google Scholar
  143. Schousboe A (1981) Transport and metabolism of glutamate and GABA in neurons and glial cells. Intern Rev Neurobiol 22: 1–45CrossRefGoogle Scholar
  144. Schwartzkroin PA, Knowles WD (1984) Intracellular study of human epileptic cortex; in vitro maintenance of epileptiform activity? Science 223: 709–712PubMedCrossRefGoogle Scholar
  145. Segura ET, DeJuan A (1966) Electroencephalographic studies in toads. Electroenceph Clin Neurophysiol 21: 373–380PubMedCrossRefGoogle Scholar
  146. Segura ET, Kacelnik A (1977) Cardiorespiratory and electroencephalographic responses to stimulation of the mesencephalic tegmentum in toads, lizards, and rats. Exp Neurol 57: 363–373CrossRefGoogle Scholar
  147. Servit Z (1977) Phylogenetic aspects of synchronisation in the electrogenesis of epileptic phenomena. Thalamo-cortical mechanisms in lower vertebrates. In: Petsche H, Brazier MA (eds) Epilepsies. Springer-Verlag, New York Berlin Heidelberg, pp 291–306Google Scholar
  148. Shaefor PJ, Rowland V (1974) Dissociation of cortical steady potential shifts from mass action potentials in cats awaiting food rewards. Physiol Psycho! 2 (4): 471–480Google Scholar
  149. Singer W (1973) The effect of mesencephalic reticular stimulation on intracellular potentials of cat lateral geniculate neurons. Brain Res 61: 35–54PubMedCrossRefGoogle Scholar
  150. Singer W (1979) Central core control of visual-cortex functions. In: Schmitt FO, Worden FG (eds) The neurosciences fourth study program. MIT Press, Cambridge, pp 1093–1110Google Scholar
  151. Sokolov EN (1960) Neuronal models and the orienting reflex. In: Brazier MA (ed) The central nervous system and behavior. Macey, New York, pp 187–276Google Scholar
  152. Sokolov EN (1963a) Higher nervous functions: the OR. Ann Rev Physiol 25: 545–580CrossRefGoogle Scholar
  153. Sokolov EN (1963b) Perception and the conditioned reflex. Pergamon Press, OxfordGoogle Scholar
  154. Soper H v, Strain GM, Babb TL, Lieb JP, Crandall PH (1978) Chronic alumina temporal lobe seizures in monkeys. Exp Neurol 62: 99–121PubMedCrossRefGoogle Scholar
  155. Spinks JA, Siddle D (1983) The functional significance of the orienting response. In: Siddle D (ed) Orienting and habituation: perspectives in human research. John Wiley, New York, pp 237–314Google Scholar
  156. Strain GM, Babb TL, Soper HV, Perryman KM, Lieb JP, Crandall PH (1979) Effects of chronic cerebellar stimulation on chronic limbic seizures in monkeys. Epilepsia 20: 651–664PubMedCrossRefGoogle Scholar
  157. Susuki J, Nakamoto Y, Shinkawa Y (1983) Local cerebral glucose utilisation in epileptic seizures of the mutant El mouse. Brain Res 266: 359–363CrossRefGoogle Scholar
  158. Suzuki TA, Jacobson JH (1971) Reticular stimulation and the light-adapted discharges of the visually-evoked cortical response in cat. Tohoku JExp Med 103: 269–283CrossRefGoogle Scholar
  159. Swann JW, Brady RJ (1983) Penicillin-induced epileptogenesis in immature rat CA3 hippocampal pyramidal cells. Develop Brain Res 12: 243–254CrossRefGoogle Scholar
  160. Swann JW, Smith KL, Brady RJ (1986) Extracellular K+ accumulation during penicillin induced epileptogenesis in the CA3 region of immature rat hippocampus. Develop Brain Res 30: 243–255CrossRefGoogle Scholar
  161. Symons JR (1963) The effects of various heteromodal stimuli on visual sensitivity. Quart J Exp Psycho! 15: 243–251CrossRefGoogle Scholar
  162. Tasaki I (1978) Chemical stimulants and real-time spectrum analyzer used for studying properties of membrane excitable sites. In: Chalazonitis N, Boisson M (eds) Abnormal neuronal discharges Raven Press, New York, pp 233–242Google Scholar
  163. Tauber ES, Rojas-Ramirez J, Hernandez-Peon R (1968) Electrophysiological and behavioural correlates of wakefulness and sleep in the lizard Ctenosaura pectinata. Electroenceph Clin Neurophysiol 24: 424433Google Scholar
  164. Taylor DC, Bower BD (1971) Prevention in epileptic disorders. The Lancet 2: 1136–1138CrossRefGoogle Scholar
  165. Taylor-Courval D, Gloor P (1984) Behavioural alterations associated with generalised spike and wave discharges in the EEG of the cat. Exp Neurol 83: 167–186.PubMedCrossRefGoogle Scholar
  166. Thiessen DD, Lindzey G, Friend HC (1968) Spontaneous seizures in the Mongolian gerbil. Psychon Sci 11: 227–228.Google Scholar
  167. Thompson RF, Voss JF, Brogden WJ (1965) Effects of brightness of simultaneous visual stimulation on absolute auditory sensitivity. JExp Psycho! 55: 45–50Google Scholar
  168. Turpin G (1983) Unconditioned reflexes and the autonomic nervous system. In: Siddle D (ed) Orienting and habituation: perspectives in human research. John Wiley, New York Toronto, pp 1–71Google Scholar
  169. Verzeano M (1972) Pacemakers, synchronisation, and epilepsy. In: Petsche H, Brazier MA (eds) Synchronisation of EEG activity in epilepsies Springer-Verlag, Wien New York, pp 154–188Google Scholar
  170. Verzeano M, Laufer M, Spear P, McDonald S (1970) The activity of neuronal networks in the thalamus of the monkey. In: Pribram KH, Broadbent DE (eds) Biology of memory. Academic Press, New York, pp 239–271Google Scholar
  171. Vinogradova OS (1961) The orientation reaction and its neurophysiological mechanisms. Acad Ped Sci RSFSR, MoscowGoogle Scholar
  172. Ward AA (1978) Glia and epilepsy. In: Schoffeniels E, Franck G, Hertz L, Tower DB (eds) Dynamic properties ofglial cells. Pergamon Press, New York, pp 413–427Google Scholar
  173. Ward AA (1983) Physiological basis of chronic epilepsy and mechanisms of spread. In: Delgado Escueta AV, Wasterlain CG, Treiman DM, Porter RJ (eds) Advances in neurology, 34: status epilepticus. Raven Press, New York, pp 189–197Google Scholar
  174. Watkins WH, Feehrer CE (1965) Acoustic facilitation of visual detection. JErp Psycho! 70: 332–333Google Scholar
  175. Wolff JR, Guldner FH (1978) Perisynaptic astroglial reactions to neural activity. In: Schoffeniels E, Franck G, Hertz L, Tower DB (eds) Dynamic properties of glial cells. Pergamon Press, New York, pp 115–118Google Scholar
  176. Yasuzumi G, Aoyama N, Yabimoto N (1983) Ultrastructural changes of basal laminae and protoplasmic astrocytes in craniostenosis with epilepsy. J Submicrosc Cytol 15 (2): 583–592PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Peter R. Laming
    • 1
  1. 1.Department of BiologyQueen’s University of BelfastBelfastNorthern Ireland

Personalised recommendations