Schema Theory as a Common Language to Study Sensori-Motor Coordination

  • Francisco Cervantes-Perez

Abstract

Among sciences there is a tendency to generate data and knowledge in one discipline without making it available to other disciplines. We discuss how Arbib’s Schema Theory represents an attempt to solve this isolation problem in Cognitive Science by providing us with a global language explaining cognitive processes at a level that can be used, and understood, within all disciplines of cognitive sciences. In addition, we show how Schema Theory adds a key methodology to the “top-down” approach which allows us to set the stage within the theory-experiment cycle in order to investigate the neural substrate of sensori-motor coordination. We use our analyses of visuomotor coordinations in toads and praying mantises as examples (i) to show the applicability of Schema Theory in the study of what processes should occur within an animal’s brain in order to explain overall behaviors, and (ii) to point out how Schema Theory permits, in a very general way, to work top-down. The ultimate aim is to generate testable hypotheses about the neural mechanisms that underlie behavior.

Keywords

Optic Tectum Perceptual Schema Brain Theory Visuomotor Coordination Visuomotor System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arbib MA (1972) The metaphorical brain: an introduction to cybernetics as artificial intelligence and brain theory. Wiley Interscience, New YorkGoogle Scholar
  2. Arbib MA (1981) Perceptual structures and distributed motor control. In: Brooks VB (ed) Handbook of physiology–The nervous system II. Motor control. American Physiological Society Bethesda MD, pp 1449–1480Google Scholar
  3. Arbib MA (1985) In search of the person Univ of Massachusetts Press, Amherst MAGoogle Scholar
  4. Arbib MA (1987a) Brains, machines and mathematics Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  5. Arbib MA (1987b) From schema theory to language. Oxford Univ Press, Oxford New YorkGoogle Scholar
  6. Arbib MA (1989) The metaphorical brain 2: neural networks and beyond Wiley Interscience, New York (in press)Google Scholar
  7. Arbib MA, House D (1985) Depth and detours: an essay on visually guided behavior. COINS Tech Rep 8648, Univ of Mass, Amherst MAGoogle Scholar
  8. Arbib MA, House D (1987) Depth and detours: an essay on visually guided behavior. In: Arbib MA, Hanson AR (eds) Vision, brain, and cooperative compution. A Bradford Book/MIT Press, Cambridge Mass, pp 129–163Google Scholar
  9. Brzoska J, Schneider H (1978) Modification of prey-catching behavior by learning in the common toad (Bufo bufo L, Anura, Amphibia); changes in response to visual objects and effects of auditory stimuli. BehavProcesses3: 125–136Google Scholar
  10. Camhi JM (1984) Neuroethology. Sinauer Ass Inc, Sunderland MAGoogle Scholar
  11. Cervantes F, Lam R, Arbib M (1983) A neural model of interactions subserving prey-predator discrimination and size preference in anuran amphibia. In: Lara R, Arbib MA (eds) Proceedings of the second workshop on visuomotor coordination in frog and toad: models and experiments COINS Tech Rep 83–19, Univ of Mass, Amherst MAGoogle Scholar
  12. Cervantes-Pérez F (1985) Modelling and analysis of neural networks in the visuomotor system of anura amphibia. COINS Tech Rep 85–27, Univ of Mass at Amherst MAGoogle Scholar
  13. Cervantes-Pérez F, Lam R, Arbib MA (1985) A neural model of interactions subserving prey-predator discrimination and size preference in anuran amphibia. J Timor Bio1113: 117–152Google Scholar
  14. Chomsky N (1956) Three models of the description of language. Proc Symp Inf Theory. IRE Transactions on Information TheoryIT-2(3): 113–124Google Scholar
  15. Collett T (1983) Picking a route: do toads follow rules or make plans? In: Ewert J-PGoogle Scholar
  16. Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology Plenum Press, London New York, pp 321–330Google Scholar
  17. Cott HB (1936) The effectiveness of protective adaptations in the hive-bee, illustrated by experiments on the feeding reactions, habit formation and memory of the common toad (Bufo bufo bufo). Proc Zoo! Soc (London) 1: 113–133Google Scholar
  18. Craik KJW (1943) The nature of explanation. Cambridge Univ Press, Cambridge MAGoogle Scholar
  19. Crosson F, Sayre K (1967) Philosophy and cybernetics. Univ Notre Dame Press, NotreGoogle Scholar
  20. Dame, Indiana Didday RL (1976) A model of visuomotor mechanisms in the frog optic tectum. Math Biosci 30: 169–180CrossRefGoogle Scholar
  21. Ewert J-P (1968) Der Einfluß von Zwischenhirndefekten auf die Visuomotorik im Beute-undGoogle Scholar
  22. Fluchtverhalten der Erdkröte (Bufo bufo L). Z Vergl Physiol 61: 41–70Google Scholar
  23. Ewert J-P (1976) The visual system of the toad: behavioral and physiological studies on a pattern recognition system. In: Fite KV (ed) The amphibian visual system: a multidisciplinary approach. Academic Press, New York, pp 141–202Google Scholar
  24. Ewert J-P (1980) Neunocthology: an introduction to the neurophysiological fundamentals of behavior. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  25. Ewert J-P (1984) Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York, pp 247–416Google Scholar
  26. Ewert J-P (1987) Neuroethology of releasing mechanisms: prey-catching in toads. Behav Brain Sci 10: 337–405Google Scholar
  27. Ewert J-P, Seelen W v (1974) Neurobiologie und Systemtheorie eines visuellen Mustererkennungsmechanismus bei Kröten. Kybernetik 14: 167–183PubMedCrossRefGoogle Scholar
  28. Ewert J-P, Traud R (1979) Releasing stimuli for antipredator behaviour in the common toad Bufo bufo (L). Behaviour68: 170–180Google Scholar
  29. Ewert J-P, Arend B, Becker V, Borchers H-W (1979) Invariants in configurational prey selection by Bufo bufo (L). Brain Behav Evol l6: 38–51Google Scholar
  30. Fikes R, Hart P, Nielsson N (1972) Some new directions in robot problem solving. In: Meltzer B, Michi D (eds) Machine intelligence, Vol Z pp 405–430Google Scholar
  31. Fite KV, Scalia F (1976) Central visual pathways in the frog. In: Fite KV (ed) The amphibian visual system: a multidisciplinaryapproach. Academic Press, New York, pp 87–118Google Scholar
  32. Fu KS (1971) Learning control systems and intelligent control systems: an intersection of artificial intelligence and automatic control. IEEE Transactions on Automatic Control AC-16: 70–72Google Scholar
  33. Grüsser O-J, Grüsser-Cornehls U (1976) Neurophyiology of the anuran visual system. In: Llinâs R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 298–385Google Scholar
  34. Grüsser-Cornehls U (1984) The neurophysiology of the amphibian optic tectum. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York, pp 211–245Google Scholar
  35. Heusser H (1960) Instinkterscheinungen an Erdkröten unter besonderer Berücksichtigung des Fortpflanzungsinstinktes der Erdkröte (Bufo bufoL). ZTierpsychol17: 67–81Google Scholar
  36. Iberall T, Lyons D (1984) Towards perceptual robotics. COINS Tech Rep 84–17, Univ of Mass at Amherst MAGoogle Scholar
  37. Ingle DJ (1976) Spatial vision in anurans. In: Fite KV (ed) The amphibian visual system: a multidisciplinary approach. Academic Press, New York, pp 119–140Google Scholar
  38. Ingle DJ (1983a) Brain mechanisms of visual localization by frogs and toads. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, London New York, pp 177–226CrossRefGoogle Scholar
  39. Ingle DJ (1983b) Prey-selection in frogs and toads: a neuroethological model. In: Satinoff E, Teitelbaum P (eds) Handbook of behavioral neurobiology, Vol 6 Motivation. Plenum Press, New York, pp 235261Google Scholar
  40. Kondrashev SL (1976) Influence of the visual stimulus size on the breeding behavior of anuran males. Akad Nank Zool J55: 1576–1579Google Scholar
  41. Kondrashev SL (1987) Neuroethology and color vision in amphibians. A commentary. Behav Brain Sci 10: 385CrossRefGoogle Scholar
  42. Lara R, Arbib MA (1985) A model of the neural mechanisms responsible for pattern recognition and stimulus-specific habituation in toads. Bio!Cybern51: 223–237Google Scholar
  43. Lara R, Cervantes F, Arbib MA (1982) Two-dimensional model of retinal-tectal-pretectal interactions for the control of prey-predator recognition and size preference in amphibia. In: Amari S, Arbib MA (eds) Competition and cooperation in neuronal nets. Springer-Verlag, Berlin Heidelberg New York, pp 371–393CrossRefGoogle Scholar
  44. Lara R, Carmona M, Daza F, Cruz A (1984) A global model of the neural mechanisms responsible for visuomotor coordination in toads. JTheorBiol110: 587–618Google Scholar
  45. Lazar G (1984) Structure and connections of the frog optic tectum. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York, pp 185–210Google Scholar
  46. Lee C, Gonzalez R, Fu KD (1983) Tutorial on robotics IEEE Computer Society PressGoogle Scholar
  47. Lock A, Collett T (1979) A toad’s devious approach to its prey: a study of some complex uses of depth vision. J Comp Physiol 131: 179–189CrossRefGoogle Scholar
  48. McCulloch WS, Pitts WH (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys5: 115–133Google Scholar
  49. Minsky M (1961) Steps toward artificial intelligence. Proc IRE49: 8–30Google Scholar
  50. Minsky M (1985) Robotics. Omni Publications International, New YorkGoogle Scholar
  51. Muntz WRA (1962a) Microelectrode recordings from the diencephalon of the frog, Rana pipiens, and a blue sensitive system. JNeurophysiol25: 699–711Google Scholar
  52. Muntz WRA (1962b) Effectiveness of different colours of light in releasing the positive phototactive behavior of frogs, and a possible function of the retinal projection to the diencephalon. J Neurophysiol 25: 712–720Google Scholar
  53. Neisser U (1976) Cognition and reality: principles and implications of cognitive psychology. WH Freeman, San Francisco CAGoogle Scholar
  54. Piaget J (1971) Biology and knowledge: an essay on the relations between organic and cognitive processes. Edinburgh University Press, EdinburghGoogle Scholar
  55. Rosenblueth A, Wiener N, Bigelow J (1943) Behavior, purpose and teleology. Philos Sci 10: 18–24CrossRefGoogle Scholar
  56. Roth G, Jordan M (1982) Response characteristics and stratification of tectal neurons in the toad Bufo bufo (L). Exp Brain Res 45: 393–398PubMedCrossRefGoogle Scholar
  57. Rumelhart DE, McClelland JL (1986) (eds) Parallel distributed processing. Explorations in the microstructures of cognition. MIT Press, Cambridge MAGoogle Scholar
  58. Scalia F, Fite KV (1974) A retinotopic analysis of the central connections of the optic nerve of the frog. J Comp Neural 158: 455–478CrossRefGoogle Scholar
  59. Schürg-Pfeiffer E, Ewert J-P (1981) Investigations of neurons involved in the analysis of Gestalt prey features in the frog Rana temporaria. J Comp Physio1141: 139–152Google Scholar
  60. Simon HA (1980) Cognitive science: the newest science in the artificial. Cognitive Sci 4: 33–46CrossRefGoogle Scholar
  61. Székely G, Lazar G (1976) Cellular and synaptic architecture of the optic tectum. In: Llinas R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 407–434CrossRefGoogle Scholar
  62. Wiener N (1948) Cybernetics: or control and communication in the animal and the machine. The Technology Press and Wiley, New YorkGoogle Scholar
  63. Yankelevich G, Méndez A (1986) Ensayos en interciencia. UNAM Press, MéxicoGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Francisco Cervantes-Perez
    • 1
  1. 1.Departamento de Neurosciencias Instituto de Fisiologia CelularUniversidad Nacional Autonóma de MéxicoMéxicoMéxico

Personalised recommendations