Wound Environment

Implications for Healing and Infection
  • Patricia M. Mertz
  • William H. Eaglstein

Abstract

Recent advances in understanding the wound repair process have drawn attention to the complex series of events that follow injury. How the local wound environment can stimulate or retard regeneration and how environmental conditions can be controlled are reviewed in this chapter.

Keywords

Chlorhexidine Gluconate Combine Injury Recombinant Human Epidermal Growth Factor Wound Environment Occlusive Dressing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oughterson, A. W., and Warren, S. Medical Effects of the Atomic Bomb in Japan, Vol. 8. National Nuclear Energy Series. Division VIII. Vol. 8. McGraw-Hill Book Company, Inc., New York, 1956.Google Scholar
  2. 2.
    Eaglstein, W. H., and Mertz, P. M. New method for assessing epidermal wound healing: The effect of triamcinolone acetonide and polyethylene film occlusion. J Invest Dermatol 71 (6): 382–384, 1978.Google Scholar
  3. 3.
    Winter, G. D. Formation of scab and the rate of epithelialization on superficial wounds in the skin of domestic pig. Nature 193: 293–294, 1964.CrossRefGoogle Scholar
  4. 4.
    Zar, J. H. The Normal Distribution in Biostatisticat Analysis. Prentice-Hall, Englewood Cliffs, New Jersey, 1974.Google Scholar
  5. 5.
    Armitage, P. Statistical Methods in Research. Blackwell Scientific Publications, Oxford, 1971, pp. 131–134.Google Scholar
  6. 6.
    Mertz, P. M., Alvarez, O. M., Smerbeck, R. V., et al. A new in vitro model for the evaluation of topical antiseptics on superficial wounds: The effect of 70% alcohol and povidone-iodine solution. Arch Dermatol 120: 58–62, 1984.PubMedCrossRefGoogle Scholar
  7. 7.
    Ulrich, J. A. Antimicrobial efficacy in the presence of organic matter. In: Skin Microbiology Relevance to Clinical Infections. H. Maibach and R. Aly, Eds. Springer Verlag, New York, 1981, pp. 149–157.Google Scholar
  8. 8.
    Mertz, P. M., Marshall, D. A., and Kuglar, M. A. The effect of povidone iodine in polyethylene oxide hydrogel dressing on multiplication of Staphylococcus aureus in partial-thickness wounds. Arch Dermatol 122: 1133–1138, 1986.PubMedCrossRefGoogle Scholar
  9. 9.
    Rodeheaver, G., Bellamy, W., Kody, M., et al. Bactericidal activity and toxicity of iodine-containing solutions in wounds. Arch Surg 117: 181–185, 1982.PubMedCrossRefGoogle Scholar
  10. 10.
    Pratt, L., Balin, A. K., and Carter, D. M. Dilute povidone-iodine solutions inhibit human fibroblast growth. J Clin Res 33: 676, 1985.Google Scholar
  11. 11.
    Geronemus, R. G., Mertz, P. M., and Eaglstein, W. H. Wound healing: The effects of topical antimicrobial agents. Arch Dermatol 115: 1311–1314, 1979.PubMedCrossRefGoogle Scholar
  12. Mertz, P. M., Dunlop, B. W., and Eaglstein, W. H. The effects of BactrobanTM ointment on epidermal wound healing in partial thickness wounds. In: Bactroban (Mupirocin). Proceedings of an International Symposium. R. L. Dobson, J. J. Leyden, W. C. Noble, et al.,Eds. Excerpta Medica, Princeton, 1985, pp. 211–215.Google Scholar
  13. 13.
    Mertz, P. M., Marshall, D. A., Eaglstein, W. H., et al. Topical mupirocin treatment of impetigo is equal to oral erythromycin therapy. Arch Dermatol 125: 1069–1073, 1989.PubMedCrossRefGoogle Scholar
  14. 14.
    Lineweaver, T. Topical antimicrobial toxicity. Arch Surg 120: 267–270, 1985.CrossRefGoogle Scholar
  15. 15.
    Flamed, L. M., Ellis, F. D., Boudreault, G., et al. Hibiclens keratitis. Am J Ophthalmol 104: 50–56, 1987.Google Scholar
  16. 16.
    Eaglstein, W. H. Experiences with biosynthetic dressings. J Am Acad Dermatol 12: 434–440, 1985.PubMedCrossRefGoogle Scholar
  17. 17.
    Eaglstein, W. H., Davis, S. C., Mehle, A. L., et al. Optimal use of an occlusive dressing to enhance healing. Arch Dermatol 124 (3): 392–395, 1988.PubMedCrossRefGoogle Scholar
  18. 18.
    Davis, S. C., Mertz, P. M., and Eaglstein, W. H. The effects of DuoDerm® and Opsite®, two occlusive dressings, on second-degree burn wound healing. J Invest Dermatol 86(4): 470 (Abstract), 1986.Google Scholar
  19. 19.
    Mertz, P. M., and Eaglstein, W. H. The effect of a semi-occlusive dressing on the microbial population in superficial wounds. Arch Surg 119: 287–289, 1984.PubMedCrossRefGoogle Scholar
  20. 20.
    May, S. R. Physiology, immunology and clinical efficacy of an adherent polyurethane wound dressing: Opsite®. In: Burn Wound Coverings. Vol. 11. D. L. Wise, Ed. CRC Press, Boca Raton, Florida, 1984, pp. 53–78.Google Scholar
  21. 21.
    Mertz, P. M., Marshall, D. A., and Eaglstein, W. H. Occlusive wound dressings to prevent bacterial invasion and wound infection. J Am Acad Dermato112(4):662–668, 1985.Google Scholar
  22. 22.
    Marshall, D. A., Mertz, P. M., and Eaglstein, W. H. An evaluation of the multiplication of some common pathogens in wounds treated with various occlusive dressing. J Invest Dermatol 86(4): 492 (Abstract), 1986.Google Scholar
  23. 23.
    Alvarez, O. M., Mertz, P. M., and Eaglstein, W. H. The effect of occlusive dressings on collagen synthesis and reepithelialization in superficial wounds. J Surg Res 35 (2): 142–148, 1981.CrossRefGoogle Scholar
  24. 24.
    Davis, S. C., and Mertz, P. M. The effect of pulsed electrical stimulation on epidermal wound healing. J Invest Dermatol 90(4): 555 (Abstract), 1988.Google Scholar
  25. 25.
    Davis, S. C., Cazzaniga, A., Reich, J. D., et al. Pulsed electrical stimulation: The effect of varying polarity. J Invest Dermatol 92: 418 (Abstract), 1989.Google Scholar
  26. 26.
    Weiss, D. S., Eaglstein, W. H., and Falanga, V. Pulsed electrical stimulation decreases scar thickness at split-thickness graft donor sites. J Invest Dermatol 92: 539 (Abstract), 1989.Google Scholar
  27. 27.
    Alvarez, O. M. Cultured epidermal autografts in clinics in dermatology. In: Clinics in Dermatology. W. H. Eaglstein, Ed. J. B. Lippincott, Philadelphia, 1984, pp. 54–67.Google Scholar
  28. 28.
    Mertz, P. M., Davis, S. C., Arakawa, Y., et al. Pulsed rhEGF treatment increased epithelialization of partial thickness wounds. J Invest Dermatol 90: 588 (Abstract), 1988.Google Scholar
  29. 29.
    Hebda, P. A., Klingbeil, C., Abraham, J., et al. Acceleration of epidermal wound healing by human basic fibroblast growth factor. J Invest Dermatol 90: 568 (Abstract), 1988.Google Scholar
  30. 30.
    Mertz, P. M., Davis, S. C., Eaglstein, W. H., et al. Interleukin-1 is a potent inducer of wound reepithelialization. J Invest Dermatol 92: 480 (Abstract), 1989.Google Scholar
  31. 31.
    Hebda, P. A. The acceleration of epidermal wound healing in partial thickness burns by transforming growth factor-beta. J Invest Dermatol 92: 442 (Abstract), 1989.Google Scholar
  32. 32.
    Eaglstein, W. H., and Mertz, P. M. “Inert” vehicles do affect wound healing. J Invest Dermatol 74: 90–91, 1980.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Patricia M. Mertz
    • 1
  • William H. Eaglstein
    • 1
  1. 1.Department of Dermatology and Cutaneous SurgerySchool of Medicine, University of MiamiMiamiUSA

Personalised recommendations