Geomagnetic Sensitivity in Cetaceans: An Update With Live Stranding Records in the United States

  • Joseph L. Kirschvink
Part of the NATO ASI Series book series (NSSA, volume 196)

Summary

Cetacean stranding sites have been linked to the presence of local magnetic anomalies in several widely-separated geographic areas, including the eastern coast of North America and the British Islands. Previous studies of this sort have been hampered largely by inadequate survey data for the magnetic field, as well as by incomplete records of cetacean stranding events. A major improvement in the geomagnetic anomaly data available for these studies has been the 1988 publication of the geomagnetic anomaly map of North America compiled by the Geological Society of America, and its subsequent public release in digital form. Compared with the records of cetacean live stranding events compiled by the Smithsonian Institution in Washington, D.C., these new magnetic anomaly data more than double the number of live stranding events in the United States which fall within the boundaries of geomagnetic surveys. These new data add further support to the hypothesis that cetaceans possess a geomagnetic sensory system comparable to that in other migratory and homing animals, and are consistent with previous suggestions that features of the geomagnetic field, in particular the marine magnetic lineations, play an important role in the long-distance navigation of marine mammals.

Keywords

Magnetic Anomaly Sockeye Salmon Thunnus Albacares Magnetotactic Bacterium Homing Pigeon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balkwill D. L., Maratea D., and Blakemore, R. P., 1980, Ultrastructure of a magnetotactic spirillium. J. Bacteriol. 141: 1399–1408.PubMedGoogle Scholar
  2. Blakemore, R. P., 1975, Magnetotactic bacteria. Science 190: 377–379.PubMedCrossRefGoogle Scholar
  3. Chang, S. R., and Kirschvink, J. L., 1989, Magnetofossils, the magnetization of sediments, and the evolution of magnetite biomineralization. Ann. Rev. Earth Planet. Sci. 17: 69–95.CrossRefGoogle Scholar
  4. Frankel, R. B., Blakemore R. P., and Wolfe R. S., 1979, Magnetite in freshwater magnetotactic bacteria. Science 203: 1355–1356.PubMedCrossRefGoogle Scholar
  5. Frankel, R. B., Papaefthymiou, G. C., and Blakemore, R. P., 1985, Mössbauer spectroscopy of iron biomineralization products in magnetotactic bacteria, in: “Magnetite Biomineralization and Magnetoreception in Organisms: A New Biomagnetism”, Kirschvink J. L., D. S. Jones and B. J. MacFadden, eds., Plenum Press, New York, 269–287.CrossRefGoogle Scholar
  6. Gould J. L., Kirschvink J. L., and Deffeyes, K. S., 1978, Bees have magnetic remanence. Science 202: 1026–1028.CrossRefGoogle Scholar
  7. Griffin, D. R., 1944, The sensory basis of bird navigation. Q. Rev. Biol. 19: 15–31.CrossRefGoogle Scholar
  8. Griffin, D. R., 1982, Ecology of migration: Is magnetic orientation a reality? Q. Rev. Biol. 7: 293–295.CrossRefGoogle Scholar
  9. Grim, M. S., Behrendt, J. G, and Klitgord, K. M., 1982, Description of digital aeromagnetic data, U.S. Atlantic Continental Margin, Survey of 1974–76. U.S. Geological Survey open-file report82–189: pp. 1–11.Google Scholar
  10. Kalmijn, A. J., 1974, The detection of electric fields from inanimate and animate sources other than electric organs, in: “Handbook of Sensory Physiology, v.9”, A. Fessard, ed., 147–200.Google Scholar
  11. Keeton, W. T., 1972, Effects of magnets on pigeon homing, in: “Animal Orientation and Navigation”, S. E. Galler, ed., NASA SP-262, 579–594.Google Scholar
  12. Keeton, W. T., Larkin, T. S., and Windsor, D. M., 1974, Normal fluctuations in the earth’s magnetic field influence pigeon orientation. J. Comp. Physiol. 95: 95–103.CrossRefGoogle Scholar
  13. Kirschvink, J. L., and Chang, S. R., 1984, Ultrafine-grained magnetite in deep-sea sediments: Possible bacterial magnetofossils. Geology 12: 559–562.CrossRefGoogle Scholar
  14. Kirschvink, J. L., and Gould, J. L., 1981, Biogenic magnetite as a basis for magnetoreception in animals. Biosystems 13: 181–201.PubMedCrossRefGoogle Scholar
  15. Kirschvink, J. L., Dizon, A. E., and Westphal, J. A., 1986, Evidence from strandings for geomagnetic sensitivity in cetaceans. J. Exp. Biol. 120: 1–24.Google Scholar
  16. Kirschvink, J. L., Walker, M. M., Chang, S-B. R., Dizon, A. E., and Peterson, K. A., 1985, Chains of Single-Domain Magnetite Particles in Chinook Salmon, Oncorhynchus tshawvtscha. J. Comp. Phvs. A.. 157, 375–381.CrossRefGoogle Scholar
  17. Kirschvink, J. L. and Walker, M. M., 1985, Particle-size considerations for magnetite-based magnetoreceptors, in: “Magnetite Biomineralization and Magnetoreception in Animals: A New Biomagnetism”, J. L. Kirschvink, D. S. Jones, and B. J. MacFadden, eds., Plenum Press, New York, 243–254.CrossRefGoogle Scholar
  18. Kirschvink, J. L. and Kobayashi-Kirschvink, A., 1991, Is Geomagnetic Sensitivity Real? Replication of the Walker-Bitterman Conditioning Experiment in Honey bees. American Zoologist V. 31, January 1991 (in press).Google Scholar
  19. Kirschvink J. L., Jones, D. S., and MacFadden, B. J., eds., 1985, “Magnetite Biomineralization and Magnetoreception in Organisms: A New Biomagnetism”, Plenum Press, New York, 682 pp.Google Scholar
  20. Klinowska, M., 1985a, Cetacean live stranding sites relate to geomagnetic topography. Aquatic Mammals 11(.l): 27–32.Google Scholar
  21. Klinowska, M., 1985b, Cetacean live stranding dates relate to geomagnetic disturbances, Aquatic Mammals 11(3): 109–119.Google Scholar
  22. Kramer G., 1952, Experiments on bird orientation. Ibis 94: 265–285.CrossRefGoogle Scholar
  23. Kreithen M. L. and Eisner T., 1978, Detection of ultraviolet light by the homing pigeon. Nature 272: 347–348.PubMedCrossRefGoogle Scholar
  24. Kreithen, M. L. and Keeton, W. T., 1974a, Detection of polarized light by the homing pigeon, Columbia livia. J. Comp. Physiol. 89: 83–92.CrossRefGoogle Scholar
  25. Kreithen, M. L. and Keeton, W. T., 1974b, Attempts to condition homing pigeons to magnetic stimuli. J. Comp. Physiol. 91: 355–362.CrossRefGoogle Scholar
  26. Kreithen, M. L. and Quine, D., 1979, Infrasound detection by the homing pigeon: a behavioral audiogram. J. Comp. Physiol. 12: 1–4.CrossRefGoogle Scholar
  27. Kuterbach, D., Walcott B., Reeder R. J., and Frankel R. B., 1982, Iron-containing cells in the honey bee (Apis mellifera), Science 218: 695–697.PubMedCrossRefGoogle Scholar
  28. Leask, M. J. M., 1977, A physiochemical mechanism for magnetic field detection by migratory birds and homing pigeons. Nature 267: 144.PubMedCrossRefGoogle Scholar
  29. Lindauer, M., 1977, Recent advances in the orientation and learning of honeybees. Proc. XV Int. Congr. Entomol., 450–460.Google Scholar
  30. Lowenstam H. A. and Weiner S., 1989, “On Biomineralization”, New York, Oxford: Oxford University Press, 324 pp.Google Scholar
  31. Mann S., Sparks N. H. C., Walker M. M., and Kirschvink J. L., 1988, Ultrastructure, morphology and organization of biogenic magnetite from sockeye salmon, Oncorhynchus nerka: Implications for magnetoreception. J. Exp. Biol. 140: 35–49.PubMedGoogle Scholar
  32. Papi F., Fiore L., Fiaschi V., and Benvenuti S., 1972, Olfaction and homing in pigeons. Monit. Zool. Ital. (N.S.) 6: 85–95.Google Scholar
  33. Sauer, E. G. F., 1957, Die Sternenorientierung nachtlich ziehender Grasmucken (Sylvia atricapilla. borin und curruca). Z. Tierpsvchol. 14: 29–70.Google Scholar
  34. Sokal, R. R. and Rohlf, F. J., 1981, “Biometry”, New York: W. H. Freeman and Co., 859 pp.Google Scholar
  35. Stolz, J. F., Chang, S. R., and Kirschvink, J. L., 1986, Magnetotactic bacteria and singledomain magnetite in hemipelagic sediments. Nature 321: 849–851.CrossRefGoogle Scholar
  36. Vali H. and Kirschvink J. L., 1989, Magnetofossil dissolution in a Paleomagnetically unstable Deep-Sea Sediment. Nature 339: 203–206.CrossRefGoogle Scholar
  37. Walcott, C., 1978, Anomalies in the earth’s magnetic field increase the scatter of pigeon’s vanishing bearings, in: “Animal Migration, Navigation, and Homing”, K. Schmidt-Koenig and W.T. Keeton, eds., Springer-Verlag, Berlin, pp. 143–151.Google Scholar
  38. Walcott, C. and Green, R. P., 1974, Orientation of homing pigeons altered by a change in the direction of an applied magnetic field. Science 184: 180.PubMedCrossRefGoogle Scholar
  39. Walker, M. M., 1984, Learned Magnetic Field Discrimination in Yellowfin Tuna, Thunnus albacares. J. Comp. Phvs. A 155: 673–679.CrossRefGoogle Scholar
  40. Walker, M. M. and Bitterman, M. E., 1985, Conditioned responding to magnetic fields by honeybees. J. Comp. Phvs. A 157: 67–71.CrossRefGoogle Scholar
  41. Walker, M. M. and Bitterman, M. E., 1989a, Attached magnets impair magnetic field discrimination by honeybees. J. Exp. Biol. 141: 447–451.Google Scholar
  42. Walker, M. M. and Bitterman, M. E., 1989b, Honeybees can be trained to respond to very small changes in geomagnetic field intensity. J. Exp. Biol. 145: 489–494.Google Scholar
  43. Walker, M. M. and Bitterman, M. E., 1989c, Conditioning analysis of magnetoreception in honeybees. Bioelectromagnetics 10: 261–276.PubMedCrossRefGoogle Scholar
  44. Walker, M. M., Baird, D. L., and Bitterman, M. E., 1989, Failure of stationary but not of flying honeybees to respond to magnetic field stimuli. J. comp. Psychol. 103: 62–69.CrossRefGoogle Scholar
  45. Walker, M. M., Bitterman, M. E., and Kirschvink J. L., 1986, Experimental and correlational studies of responses to magnetic field stimuli by different species, in: “Biophysical Effects of Steady Magnetic Fields”, Maret, G., Boccara, N., and Kiepenheuer, J., eds., Springer-Verlag, New York, 194–205.CrossRefGoogle Scholar
  46. Walker, M. M., Kirschvink, J. L., Chang, S-B. R., and Dizon, A. E., 1984, A candidate magnetic sense organ in the yellowfin tuna, Thunnus albacares. Science 224: 751–753.CrossRefGoogle Scholar
  47. Walker, M. M., Kirschvink, J. L., Perry, A. S., and Dizon, A. E., 1985, Methods and techniques for the detection, extraction, and characterization of biogenic magnetite, in: “Magnetite Biomineralization and Magnetoreception in Organisms: A New Biomagnet ism”, J. L. Kirschvink, D. S. Jones, and B. J. MacFadden, eds., Plenum Press, New York, 154–166.Google Scholar
  48. Walker, M. M., Quinn, T. P., Kirschvink J. L., and Groot, T., 1988, “Production of single-domain magnetite throughout life by sockeye salmon, Oncorhynchus nerka.” J. Exp. Biol. 140: 51–63.PubMedGoogle Scholar
  49. Walker, M. M., Kirschvink, J. L., Dizon, A. E., and Ahmed, G., “Evidence that fin whales respond to the geomagnetic field during migration”, submitted to J. Exp. Biol. Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Joseph L. Kirschvink
    • 1
  1. 1.Division of Geological and Planetary SciencesThe California Institute of TechnologyPasadenaUSA

Personalised recommendations