A Potential System of Delay-Lines in the Dolphin Auditory Brainstem

  • John M. Zook
  • Ralph A. DiCaprio
Part of the NATO ASI Series book series (NSSA, volume 196)

Abstract

This is the second of an ongoing series of reports on the comparative cytoarchitecture of the dolphin auditory brainstem. The previous report (Zook et al., 1988) focused on unusually ordered cell arrangements within three auditory brainstem cell groups: the ventral cochlear nucleus (VCN), the medial nucleus of the trapezoid body (MNTB) and the ventral nucleus of the lateral lemniscus. Part of each cell group is distinguished by an orderly alignment of cells into straight rows or columns.

Keywords

Principal Cell Temporal Delay Initial Axon Segment Axon Diameter Ventral Cochlear Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Brawer, J. R., Morest, D. K. and Kane, E. C., 1974, The neuronal architecture of the cochlear nucleus of the cat, J. Comp. Neurol., 155: 251.PubMedCrossRefGoogle Scholar
  2. Brownell, W. E., 1975, Organization of the cat trapezoid body and the discharge characteristics of its fibers, Brain Res., 94: 413.PubMedCrossRefGoogle Scholar
  3. Eaton, R. C. and Hackett, J. T., 1984, The role of the Mauthner cell in fast-starts involving escape in teleost fishes, in: “Neural Mechanisms of Startle Behavior”, R.C. Eaton, ed., Plenum Press, New York.CrossRefGoogle Scholar
  4. Einstein, G., 1988, Intracellular injection of Lucifer Yellow into cortical neurons in lightly fixed sections and its application to human autopsy material, J. Neurosci. Methods. 26: 95.PubMedCrossRefGoogle Scholar
  5. Friauf, E. and Oswald, J., 1988, Divergent projections of physiologically characterized rat ventral cochlear nucleus neurons as shown by intra-axonal injection of horseradish peroxidase, Exp. Brain Res., 73: 263.PubMedCrossRefGoogle Scholar
  6. Goldman, L. J. and Henson, O. W., Jr, 1977, Prey recognition and selection by the constant frequency bat, Pteronotus p. parnellii. Behav. Ecol. Sociobiol., 2: 411.CrossRefGoogle Scholar
  7. Guinan, J. J., Norris B. E., and Guinan, S. S., 1972, Single auditory units in the superior olivary complex. II. Locations of unit categories and tonotopic organization, Intern. J. Neurosci., 4: 147.CrossRefGoogle Scholar
  8. Harrison, J. M. and Warr, W. B., 1962, A study of the cochlear nuclei and the ascending auditory pathways of the medulla, J. Comp. Neurol., 119: 341.PubMedCrossRefGoogle Scholar
  9. Kiang, N. Y. S., Pfeiffer, R. R., Warr, W. B. and Backus, A. S., 1965, Stimulus coding in the cochlear nucleus, Ann. Otol. Rhinol. Laryngol., 74: 463.PubMedGoogle Scholar
  10. Kuwabara, N., DiCaprio, R. A. and Zook, J. M., 1989, Collateral axons of the medial nucleus of the trapezoid body, Soc. Neurosci., 15: 745.Google Scholar
  11. Li, R. Y-S. and Guinan, J. J., 1971, Antidromic and orthodromic stimulation of neurons receiving calyces of Held, MIT Q. Prog. Rep., 100: 227.Google Scholar
  12. Morest, D. K., 1968, The collateral system of the medial nucleus of the trapezoid body of the cat, its neuronal architecture and relation to the olivo-cochlear bundle, Brain Res., 9: 288.PubMedCrossRefGoogle Scholar
  13. Osen, K. K., 1969, Cytoarchitecture of the cochlear nuclei in the cat, J. Comp. Neurol., 136: 453.PubMedCrossRefGoogle Scholar
  14. Osen, K. K. and Jansen, J., 1965, The cochlear nuclei of the common porpoise, Phocaena phocaena. J. Comp. Neurol., 125: 223.CrossRefGoogle Scholar
  15. Pollak, G. and Schuller, G., 1979, Disproportionate frequency representation in the inferior colliculus of horseshoe bats : Evidence for an “acoustic fovea”, J. Comp. Physiol., 132: 47.CrossRefGoogle Scholar
  16. Rose, J. E., Brugge, J. F. Anderson, D. J. and Hind, J. E., 1968, Patterns of activity in single auditory nerve fibres of the squirrel monkey, in: “Hearing Mechanisms in Vertebrates”, A. V. S. deReuck and J. Knight, eds., Churchill, London.Google Scholar
  17. Rouiller, E. M. and Ryugo, D. K., 1984, Intracellular marking of physiologically characterized neurons in the ventral cochlear nucleus of the cat, J. Com. Neurol., 225: 167.CrossRefGoogle Scholar
  18. Schnitzler, H.-U., 1987, Echoes of fluttering insects: Information for echolocating bats, in: “Recent Advances in the Study of Bats”, M. B. Fenton, P. A. Racey, I. M. V. Rayner, eds., Cambridge U. Press, Cambridge.Google Scholar
  19. Schweizer, H., 1981, The connections of the inferior colliculus and the organization of the brainstem auditory system in the greater horseshoe bat (Rhinolophus ferrumequinum), J. Comp. Neurol., 201: 25.PubMedCrossRefGoogle Scholar
  20. Smith, P. H. and Rhode, W. S., 1987, Characterization of HRP-labeled globular bushy cells in the cat anteroventral cochlear nucleus, J. Comp. Neurol., 266: 360.PubMedCrossRefGoogle Scholar
  21. Spangler, K. M., Warr, W. B. and Henkel, C. K., 1985, The projections of principal cells of the medial nucleus of the trapezoid body in the cat, J. Comp. Neurol., 238: 249.PubMedCrossRefGoogle Scholar
  22. Suga, N., Simmons, J. A. and Jen, P. H.-S., 1975, Peripheral specialization for fine analysis of doppler-shifted echoes in the auditory system of the CF-FM bat Pteronotus parnellii. J. Exp. Bio., 63: 161.Google Scholar
  23. Tolbert, L. P. and Morest, D. K., 1982, The neuronal architecture of the anteroventral cochlear nucleus of the cat in the region of the cochlear nerve root: Golgi and Nissl methods, Neurosci., 7: 3013.CrossRefGoogle Scholar
  24. Tolbert, L. P., Morest, D. K., and Yurgelun-Todd, D. A., 1982, Neuronal architecture of the anteroventral cochlear nucleus of the cat. Horseradish peroxidase labeling of identified cell types, Neurosci., 7: 3031.CrossRefGoogle Scholar
  25. von der Emde, G. and Menne, D., 1989, Discrimination of insect wingbeat frequencies by the bat Rhinolophus ferrumequinum. J. Comp. Physiol., 164: 663.CrossRefGoogle Scholar
  26. Warr, W. B., 1972, Fiber degeneration following lesions in the multipolar and globular cell areas in the ventral cochlear nucleus of the cat, Brain Res., 40: 247.PubMedCrossRefGoogle Scholar
  27. Wu, S. H. and Oertel, D., 1984, Intracellular injections with horseradish peroxidase of physiologically characterized stellate and bushy cells in slices of mouse anteroventral cochlear nucleus, J. Neurosci., 4: 1577.PubMedGoogle Scholar
  28. Zook, J. M. and Casseday, J. H., 1982, Cytoarchitecture of the auditory system in the lower brainstem of the mustache bat, Pteronotus parnellii. J. Comp. Neurol., 207: 1.PubMedCrossRefGoogle Scholar
  29. Zook, J. M. and Casseday, J. H., 1985, Projections from the cochlear nuclei in the mustache bat, Pteronotus parnellii. J. Comp. Neurol., 237: 307.PubMedCrossRefGoogle Scholar
  30. Zook, J. M., Jacobs, M. S., Glezer, I. and Morgane, P. J., 1988, Some comparative aspects of auditory brainstem cytoarchitecture in echolocating mammals: Speculations on the morphological basis of time-domain signal processing, in: “Animal Sonar: Processes and Performance”, P.E. Nachtigall and P.W.B. Moore, eds., Plenum Press, New York.Google Scholar
  31. Zook, J. M. and DiCaprio, R. A., 1987, A preparation for the in vitro study of efferent pathways in the auditory system. Soc. Neurosci., 13: 548.Google Scholar
  32. Zook, J. M. and DiCaprio, R. A., 1988, Intracellular labeling of afferents to the lateral superior olive in the bat, Eptesicus fuscus. Hearing Res., 34: 141.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • John M. Zook
    • 1
  • Ralph A. DiCaprio
    • 1
  1. 1.Department of Zoological & Biomedical Sciences and College of Osteopathic MedicineOhio UniversityAthensUSA

Personalised recommendations