Pure Metallic Bridge and Point-Contact Tunneling Into Single- And Polycrystalline YBa2Cu3O7-y

  • K. E. Gray
  • E. R. Moog
  • M. E. Hawley

Abstract

It is known theoretically and experimentally1 that when the resistance of a point-contact is decreased the current-voltage characteristic, I(V), changes from that of an insulating barrier to that of a pure metallic bridge. Such an I(V) still shows the energy gap but, because of its much lower resistance, it is less sensitive to extraneous conduction mechanisms. Values of between 25 and 35 meV are reported here for YBa2Cu3O7−y, and these are in agreement with our results for low-resistance point-contact tunneling in both single-and poly-crystal samples. Examples of I(V) and the conductance, dI/dV, will also be presented for pure metallic bridges as well as higher resistance point-contact tunneling. An electrically insulating layer is found on the surface of all samples, including single-crystals showing no evidence of impurities measured by Raman scattering2. Consequently, contact of the tunneling tip is necessary to mechanically scrape, and thus clean, the surface before a measurable current can be obtained. Although this represents a disadvantage, a more serious drawback of point-contact tunneling is the inability to measure the I(V) continuously through the transition temperature, Tc, due to thermal expansion of the mechanical apparatus. We will argue that thin film tunnel junctions are thus desirable both to unambiguously identify the energy gap with the 90 K bulk material, and to subtract the background conductance to evaluate the electron coupling mechanism in the high-Tc superconductors (HTS), that is analogous to electron-phonon coupling in traditional superconductors3.

Keywords

Tunnel Junction Andreev Reflection Mechanical Apparatus Resonate Valence Bond Background Conductance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.E. Blonder, M. Tinkham and T.M. Klapwijk, Phys. Rev. B25, 4515 (1982);CrossRefGoogle Scholar
  2. G.E. Blonder and M. Tinkham, Phys. Rev. B27, 112 (1983).Google Scholar
  3. 2.
    R. Bhadra, T.O. Brun, M.A. Beno, B. Drabowski, D.G. Hinks, J.Z. Liu, J.D. Jorgensen, L.J. Nowicki, A.P. Paulikas, I.K. Schuller, C. Segre, L. Soderholm, B. Veal, H.H. Wang, J.M. Williams, K. Zhang and M. Grimsditch, Phys. Rev. B37, (1988).Google Scholar
  4. 3.
    E.L. Wolf, Principles of Electron Tunneling Spectroscopy (Oxford Univ. Press, New York, 1985), Chaps. 4 and 6.Google Scholar
  5. 4.
    M.E. Hawley, K.E. Gray, B.D. Terris, H.H. Wang, K.D. Carlson and J.M. Williams, Phys. Rev. Lett. 57, 629 (1986).CrossRefGoogle Scholar
  6. 5.
    M.E. Hawley, K.E. Gray, D.W. Capone II and D.G. Hinks, Phys. Rev. B35, 7224 (1987).CrossRefGoogle Scholar
  7. 6.
    J.Z. Liu, G.W. Crabtree, A. Umezawa and L. Zongquan, Phys. Lett. Al21, 305 (1987).Google Scholar
  8. 7.
    K.E. Gray, M.E. Hawley and E.R. Moog, in Novel Mechanisms of Superconductivity edited by S.A. Wolf and V.Z. Kresin ( Plenum, New York, 1987 ), p. 611.Google Scholar
  9. 8.
    E.R. Moog, M.E. Hawley, K.E. Gray, J.Z. Liu, D.G. Hinks, D.W. Capone II and J. Downey, J. Low Temp. Phys. 71, 393 (1988).CrossRefGoogle Scholar
  10. 9.
    S.T. Ruggiero and J.B. Barner, Phys. Rev. B36, 8870 (1987);CrossRefGoogle Scholar
  11. J.B. Barner and S.T. Ruggiero, Phys. Rev. Lett. 59, 807 (1987).CrossRefGoogle Scholar
  12. 10.
    H.R. Zeller and I. Giaever, Phys. Rev. 181, 789 (1969).CrossRefGoogle Scholar
  13. 11.
    P.W. Anderson and Z. Zou, Phys. Rev. Lett. 60, 132 (1988).CrossRefGoogle Scholar
  14. 12.
    Z. Schlesinger, R.T. Collins, D.L. Kaiser and F. Holtzberg, Phys. Rev. Lett. 59, 1958 (1987).CrossRefGoogle Scholar
  15. 13.
    W.K. Kwok, G.W. Crabtree, A. Umezawa, B.W. Veal, J.D. Jorgensen, S.K.Google Scholar
  16. Malik, L.J. Nowicki, A.P. Paulikas and L. Nunez, Phys. Rev. B37, 106 (1988).Google Scholar
  17. 14.
    D.C. Johnston, A.J. Jacobson, J.M. Newsan, J.T. Lewandowski, D.P. Goshorn, D. Xie and Y.B. Yelon, Proc. Symp. on Inorganic SuperconductingGoogle Scholar
  18. Materials, Amer. Chem. Soc. Nat. Mtg., New Orleans, LA, August 31-September 4, 1987.Google Scholar
  19. 15.
    J.D. Jorgensen, M.A. Beno, D.G. Hinks, L. Soderholm, K.J. Volin, R.L.Google Scholar
  20. Hitterman, J.D. Grace, I.K. Schuller, C.U. Segre, K. Zhang and M.S. Kleefisch, Phys. Rev. B36, 3608 (1987).CrossRefGoogle Scholar
  21. 16.
    R.J. Cava, B. Batlogg, C.H. Chen, E.A. Reitman, S.M. Zahurak and D. Werder, Phys. Rev. B36, 5719 (1987).CrossRefGoogle Scholar
  22. 17.
    T.K. Worthington, W.J. Gallagher and T.R. Dinger, Phys. Rev. Lett. 59, 1160 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • K. E. Gray
    • 1
  • E. R. Moog
    • 1
  • M. E. Hawley
    • 1
  1. 1.Argonne National LaboratoryMaterials Science DivisionArgonneUSA

Personalised recommendations