Biotransformations of Mercury Compounds

  • Anne O. Summers
Part of the Basic Life Sciences book series (BLSC, volume 45)

Abstract

The ability of bacteria to convert inorganic and organic mercury compounds to less toxic, volatile elemental mercury is among the most widely found plasmid-determined bacterial phenotypes. It is the best understood microbial metal transformation at levels of analysis from molecular genetics and biochemistry to population biology (4, 14). Mercury compounds are important contaminants in some environmental sites.

Keywords

Mercury Compound Detoxification System Mercuric Acetate Mercury Resistance merA Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barkay, T., L. Fouts, and B.H. Olson (1985) A method for the detection of mercury resistance genes in natural bacterial isolates. Appl. Env. Microbiol. 49:686–692.Google Scholar
  2. 2.
    Begley, T.P., A.E. Walts, and C.T. Walsh (1986) Bacterial organomercurial lyase: Overproduction, isolation, and characterization. Biochemistry 25:7186–7192.PubMedCrossRefGoogle Scholar
  3. 3.
    Begley, T.P., A.E. Walts, and C.T. Walsh (1986) Mechanistic studies of a protonolytic organomercurial cleaving enzyme: Bacterial organomercurial lyase. Biochemistry 25:7193.Google Scholar
  4. 4.
    Foster, T.J. (1987) Genetics and biochemistry of mercury resistance. CRC Crit. Rev, in Microbiol. Google Scholar
  5. 5.
    Griffin, H.G., T.J. Foster, S. Silver, and T.K. Misra (1987) Cloning and DNA sequence of the mercuric and organomercurial resistance determinants of plasmid pDU1358. Proc. Natl. Acad. Sci., USA 84:3112–3116.PubMedCrossRefGoogle Scholar
  6. 6.
    Heltzel, A., D.G. Gambill, W.J. Jackson, P.A. Totis, and A.O. Summers (1987) Overexpression and DNA-binding properties of the merencoding regulatory protein from plasmid NR1 (Tn21.). J. Bact. 169: 3379–3384.PubMedGoogle Scholar
  7. 7.
    Laddaga, R.A., L. Chu, T.K. Misra, and S. Silver (1987) Nucleotide sequence and expression of the mercurial-resistance operon from Staphylococcus aureus plasmid pI258. Proc. Natl. Acad. Sci., USA 84:5106–5110.PubMedCrossRefGoogle Scholar
  8. 8.
    Lund, P.A., and N.L. Brown (1987) Role of the merT and merP gene products of transposon Tn501 in the induction and expression of resistance to mercuric ions. Gene 52:207–214.PubMedCrossRefGoogle Scholar
  9. 9.
    Lund, P.A., S.J. Ford, and N.L. Brown (1986) Tran scriptional regulation of the mercury-resistance genes of transposon Tn501. J. Gen. Microbiol. 132:465–480.CrossRefGoogle Scholar
  10. 10.
    Miller, S.M., D.P. Ballou, V. Massey, C.H. Williams, Jr., and C.T. Walsh (1986) Two-electron reduced mercuric reductase binds Hg(II) to the active site dithiol but does not catalyze Hg(II) reduction. J. Biol. Chem. Google Scholar
  11. 11.
    Nakahara, H., J.L. Schottel, T. Yamada, Y. Miyakawa, M. Asakawa, J. Harville, and S. Silver (1985) Mercuric reductase enzymes from Streptomyces species and group B Streptococcus. J. Gen. Microbiol. 131:1053–1059.PubMedGoogle Scholar
  12. 12.
    O’Halloran, T., and C. Walsh (1987) Metalloregulatory DNA-binding protein encoded by the merR gene: Isolation and characterization. Science 235:211–214.PubMedCrossRefGoogle Scholar
  13. 13.
    Schultz, P.G., K.G. Au, and C.T. Walsh (1985) Directed mutagenesis of the redox-active disulfide in the flavoenzyme mercuric ion reductase. Biochem. 26:6840–6848.Google Scholar
  14. 14.
    Summers, A.O. (1986) Organization, expression, and evolution of genes for mercury resistance. Ann. Rev. Microbiol. 40:607–634.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Anne O. Summers
    • 1
  1. 1.Department of MicrobiologyThe University of GeorgiaAthensUSA

Personalised recommendations