Extraocular Proprioception and Body Postural References

  • J. P. Roll
  • R. Roll

Summary

Painless, well patterned vibrations, applied with an increasing frequency from 10 to 80 Hz, to either the medial or lateral rectus of a subject’s eye(s) (right, left or both), were found to induce directional perceptual and motor effects which were closely related to the postural context. The same was true with the superior and inferior recti. Illusory and/or actual movements of head, trunk or whole body were produced depending on the postural constraints (head free or fixed, standing or seated subject). Likewise, illusory directional shift of a visually fixed target in darkness during extraocular muscle vibration was reported by subjects. The contribution of extraocular proprioception to the coding of eye, head and body position in relation to postural and environmental conditions is discussed.

Keywords

Extraocular Muscle Lateral Rectus Medial Rectus Superior Rectus Inferior Rectus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashton, J. A., Boddy, A., and Donaldson, I. M. L., 1984, Input from proprioceptors in the extrinsic ocular muscles to the vestibular nuclei in the giant toad, buffo mannus, Exp. Br. Res., 53: 409–419.CrossRefGoogle Scholar
  2. Bach y Rita, P., and Ito, F., 1966, Properties of stretch receptors in cat extraocular muscles, J. Physiol., (Lond.), 186: 663–688.Google Scholar
  3. Barker, D., 1973, Muscle receptors, Handbook of sensory physiology. Springer-Verlag, ed., Berlin, Heidelberg, New York, pp. 79–154.Google Scholar
  4. Baron, J. B., 1955, Muscles moteurs oculaires, attitude et comportement des Vertébrés. Thèse Sciences, Paris.Google Scholar
  5. Batini, C., and Buisseret, P., 1974, Sensory peripheral pathway from extrinsic eye muscles, Arch. ital. Biol., 112: 18–32.PubMedGoogle Scholar
  6. Berthoz, A., 1974, Ocumomotricité et proprioception, Rev. EEG et Neurophysiol., 4: 569–586.Google Scholar
  7. Berthoz, A., 1978, Rôle de la proprioception dans le contrôle de la posture et du geste, in: Hécaen H. and Jeannerod M., eds., “Du contrôle moteur à l’organisation du geste”, Massion, Paris, pp. 187–224.Google Scholar
  8. Bizzi, E., 1974, The coordination of eye-head movement, Scientific American. 231: 100–106.PubMedGoogle Scholar
  9. Brindley, G., and Merton, P., 1960, The absence of position sense in the human eye, J. Physiol., (Lond.), 153: 127–130.PubMedGoogle Scholar
  10. Buisseret, P., 1978, Etude électrophysiologique chez le chat du développement des propriétés des champs récepteurs des neurones du cortex visuel. Rôle de la vision et de la proprioception extraoculaire, Doctorat ès Sciences, Paris, 89p.Google Scholar
  11. Buisseret, P., and Gary-Bobo, E., 1979, Development of visual cortical orientation specificity after dark-rearing: role of extraocular proprioception, Neurosciences Letters. 13: 259–263.CrossRefGoogle Scholar
  12. Burke, D., Hagbarth, K. E., Lofstedt, L., and Wallin, G., 1976, The response of human muscle spindle endings to vibration of non contracting muscles, J. Physiol., (Lond.), 261: 673–693.PubMedGoogle Scholar
  13. Cooper, S., and Daniel, P., 1949, Muscle spindles in human extrinsic eye muscles, Brain. 72: 1–24.PubMedCrossRefGoogle Scholar
  14. Cooper, S., Daniel, P. M., and Whittridge, D., 1955, Muscle spindles and other sensory endings in the extrinsic eye muscles, Brain. 78: 564–583.PubMedCrossRefGoogle Scholar
  15. De Cyon, E., 1911, “L’oreille”, Alcan, ed., Paris, 298p.Google Scholar
  16. Dichgans, J. and Brandt, 1978, Visual-vestibular interaction: effects on self-motion perception and postural control, in: “Handbook of sensory physiology”, Vol. VIII: Perception, R. Held, H.W. Leibowitz and H.L. Teuber, eds., pp. 756–804.Google Scholar
  17. Hein, A., and Diamond, R., 1982, Contribution of eye movement to representation of space, in: “Spatially oriented behavior”, A. Hein and M. Jeannerod, eds., Springer-Verlag, 983: 119–133.Google Scholar
  18. Lacour, M., 1981, Contribution à l’étude de la restauration des fonctions posturocinétiques après labyrinthectomie chez le Singe et le Chat, Thèse de Doctorat ès Sciences, Université d’Aix-Marseille I, 152pp.Google Scholar
  19. Lacour, M., Xerri, C., Barthelemy, J., et Borel, L., 1987, Neuronal coding of linear motion in the vestibular nuclei of the alert cat, II, Response characteristics to vertical visual motion cues, Exp. Brain Res, in press.Google Scholar
  20. Lackner, J. H., and Le vine, M. S., 1978, Visual direction depends upon the operation of spatial constancy mechanisms: the oculobrachial illusion, Neurosciences Letters. 7: 207–212.CrossRefGoogle Scholar
  21. Lee, D. N., and Aronson, E., 1974, Visual proprioceptive control of standing in human infants, Perception and Psychophysics. 15: 529–532.CrossRefGoogle Scholar
  22. Lee, D. N., and Lishman, J. R., 1975, Visual proprioceptive control of stance, Journal of human movement studies. 1: 87–95.Google Scholar
  23. Matin, L., Picoult, E., Stevens, J., Edwards, M., and Mac Arthur, R., 1982, Oculoparalytic illusion: visual field dependent spatial mislocalization by human partially paralysed with curare, Science. 216: 198–201.PubMedCrossRefGoogle Scholar
  24. Matthews, P. B. C., 1981, Evolving views on the internal operation and functional role of the muscle spindle, J. Physiol., 320: 1–30.PubMedGoogle Scholar
  25. Milleret, C., Gary-Bobo, E., and Buisseret, P., 1985, Responses of visual cortical cells (area 18) to extraocular muscles stretch or nerve stimulation in cats and normal or deprived kitten, Neurosciences Letters. 22 S 298.Google Scholar
  26. Mukuno, K., 1986, Morphological demonstration of ocular muscle proprioception in the human extraocular muscles, Proceedings of International Workshop on proprioception of the ocular muscles, Hakone-Matsuyama, Japon, 1–1.Google Scholar
  27. Nashner, L. M., 1970, Sensory feedback in human posture control, M.I.T. Report, MVT, 70–3.Google Scholar
  28. Paillard, J., et Beaubaton, D., 1978, De la coordination visuo-motrice à l’organisation de la saisie manuelle, in: H. Hecaen et M. Jeannerod, eds., “Du contôle moteur à l’organisation du geste”, Paris, Masson, 225–260.Google Scholar
  29. Roll, J. P., Gilhodes, J. C., and Tardy-Gervet, M. F., 1980, Effects perceptifs et moteurs des vibrations musculaires chez l’homme normal, Mise en evidence d’une reponse des muscles antagonistes, Archives italiennes de Biologie. 118: 51–71.PubMedGoogle Scholar
  30. Roll, J. P., 1981, Contribution de la proprioception musculaire à la perception et au contrôle du mouvement chez l’Homme, Thèse de Doctorat es Sciences, Marseille, 194pp.Google Scholar
  31. Roll, J. P., Vedel, J. P., 1982, Kinaesthetic role of muscle afferents in man, studied by tendon vibration and microneurography, Exp. Brain Res., 47: 177–190.PubMedCrossRefGoogle Scholar
  32. Roll, J. P., and Roll, R., 1987, Kinaesthetic and motor effects of extraocular muscle vibration in man, in: “Eye movements, from Physiology to Cognition”, J.K.O. Reagan and A. Levy-Schoen, eds., Elsevier, North Holland, 57–68.Google Scholar
  33. Stroud, M. H., and Burde, R. M., 1977, Eye-head coordination: an observation, Annals of Otolaryngology, 86: 94–96.Google Scholar
  34. Tardy-Gervet, M. F., Gilhodes, J. C., Roll, J. P., 1984, Perceptual and motor effects elicited by a moving visual stimulus below the forearm: an example of segmentary vection. Behavioral Brain Res., 11: 171–184.CrossRefGoogle Scholar
  35. Vedel, J. P., and Roll, J. P., 1983, Muscle spindle contribution to the coding motor activity in man, Experimental Brain Research, suppl. 7: 253–255.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • J. P. Roll
    • 1
  • R. Roll
    • 1
  1. 1.Laboratoire de Neurobiologie HumaineU.A. C.N.R.S. 372 - Université de ProvenceMarseilleFrance

Personalised recommendations