Neuronal Mechanisms Controlling Rhythmic Movements in Gastropod Molluscs

  • Yu. I. Arshavsky
  • T. G. Deliagina
  • I. M. Gelfand
  • G. N. Orlovsky
  • Yu. V. Panchin
  • G. A. Pavlova

Summary

We investigated the neuronal mechanisms underlying generation of the locomotor rhythm in the pedal ganglia of the marine pteropod mollusc, Clione limacina, and that of the feeding rhythm in the buccal ganglia of the freshwater mollusc, Planorbis corneus. Using a new method for isolating the identified neurons, we demonstrate that in both generators the rhythm arises due to the endogenous periodic activity of two interneuron groups (groups 7 and 8 in the Clione pedal ganglia and groups 1 and 2 in the Planorbis buccal ganglia). The appropriate phasing of the generator interneurons in the cycle is established through interactions between the two groups. In Clione, group 7 and 8 interneurons inhibit each other and this determines their alternating activity in different phases of the locomotor cycle. In Planorbis, group 1 excites group 2 and group 2 inhibits group 1. This interaction ensures the transition from the protractor phase of the feeding cycle to the retractor one; once the excitation of the group 2 neurons has been completed, a new cycle is triggered by endogenous properties of the group 1 neurons. The mechanisms of rhythm generation in the mollusc nervous system are compared with those in the nervous system of some other animals.

Keywords

Rhythmic Movement Freshwater Snail Marine Mollusc Pedal Ganglion Buccal Ganglion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arshavsky, Yu. I., Beloozerova, I. N., Orlovsky, G. N., Panchin, Yu. V., and Pavlova, G. A., 1985a, Control of locomotion in marine mollusc Clione limacina. I, Efferent activity during actual and fictitious swimming, Exp. Brain Res., 58: 255–262.PubMedGoogle Scholar
  2. Arshavsky, Yu. I., Beloozerova, I. N., Orlovsky, G. N., Panchin, Yu. V., and Pavlova, G. A., 1985b, Control of locomotion in marine mollusc Clione limacina. II, Rhythmic neurons of pedal ganglia, Exp. Brain Res., 58: 263–272.PubMedGoogle Scholar
  3. Arshavsky, Yu. I., Beloozerova, I. N., Orlovsky, G. N., Panchin, Yu. V., and Pavlova, G. A., 1985c, Control of locomotion in marine mollusc Clione limacina. III, On the origin of locomotory rhythm, Exp. Brain Res., 58: 273–284.PubMedGoogle Scholar
  4. Arshavsky, Yu.I., Beloozerova, I. N., Orlovsky, G. N., Panchin, Yu. V., and Pavlova, G. A., 1985d, Control of locomotion in marine mollusc Clione limacina, Role of type 12 interneurons, Exp. Brain Res., 58: 285–293.PubMedGoogle Scholar
  5. Arshavsky, Yu. I., Orlovsky, G. N., and Panchin, Yu. V., 1985e, Control of locomotion in marine mollusc Clione limacina. V, Photoinactivation of efferent neurons, Exp. Brain Res., 59: 203–205.PubMedCrossRefGoogle Scholar
  6. Arshavsky, Yu. I., Deliagina, T. G., Orlovsky, G. N., and Panchin, Yu. V., 1986a, Endogenous periodic activity of neurons of the feeding rhythm generator in the freshwater snail, Planorbis corneus. Proc. Acad. Sci. of USSR, 291: 473–475, in Russian.Google Scholar
  7. Arshavsky, Yu. I., Deliagina, T. G., Orlovsky, G. N., and Panchin, Yu. V., 1986b, Organization of the feeding rhythm generator in the freshwater snail, Planorbis corneus, Proc. Acad. Sci. of USSR. 291: 728–731, in Russian.Google Scholar
  8. Arshavsky, Yu. I., Deliagina, T. G., Orlovsky, G. N., Panchin, Yu. V., Pavlova, G. A., and Popova L. B., 1986c, Control of locomotion in marine mollusc Clione limacina. VI, Activity of isolated neurons of pedal ganglia, Exp. Brain Res., 63: 106–112.PubMedCrossRefGoogle Scholar
  9. Arshavsky, Yu. I., Gelfand, I. M., and Orlovsky, G. N.,1986d, Cerebellum and Rhythmical Movements, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  10. Berkinblit, M. B., Deliagina, T. G., Feldman, A. G., Gelfand, I. M., and Orlovsky, G. N., 1978a, Generation of scratching. I., Activity of spinal interneurons during scratching, J. Neurophysiol.,, 41: 1040–1057.PubMedGoogle Scholar
  11. Berkinblit, M. B., Deliagina, T. G., Feldman, A. G., Gelfand, I. M., and Orlovsky, G. N., 1978b, Generation of scratching. II. Nonregular regimes of generation, J. Neurophysiol., 41: 1058–1069.Google Scholar
  12. Bradley, G. W., Euler, C. von., Marttila, I., and Roos, B., 1975, A model of the central and reflex inhibition of inspiration in the cat, Biol. Cybem., 19: 105–116.CrossRefGoogle Scholar
  13. Calabrese, R. L., 1979, The roles of endogenous membrane properties and synaptic interaction in generating the heartbeat rhythm of the leech, Hirudo medicinalis, J. Exp. Biol., 82: 163–176.PubMedGoogle Scholar
  14. Cohen, M. I., 1979, Neurogenesis of respiratory rhythm in the mammal, Physiol. Rev., 59: 1105–1173.PubMedGoogle Scholar
  15. Cohen, M. I., and Feldman, J. L., 1977, Models of respiratory phase-switching Fed. Proc. 36: 236–2374.Google Scholar
  16. Dale, N., 1985, Reciprocal inhibitory interneurons in the Xenopus embryo spinal cord, J. Physiol., 363: 61–70.PubMedGoogle Scholar
  17. Dekin, M. S., Richerson, G. B., and Getting, P. A., 1985, Thyrotropin-releasing hormone induces rhythmic bursting in neurons of the nucleus tractus solitarius, Science, 229: 67–69.PubMedCrossRefGoogle Scholar
  18. Delcomyn, F., 1980, Neural basis of rhythmic behavior in animals, Science. 210: 492–498.PubMedCrossRefGoogle Scholar
  19. Dyakonova, T. L., 1985, Two types of neurons differing by plastic properties: study of ionic mechanisms, Pavlov J. Higher Nerv. Activity, 35: 552–560, in Russian.Google Scholar
  20. Elliott, C. J. H., and Benjamin, P. R., 1985, Interactions of pattern-generating interneurons controlling feeding in Lymnaea stagnalis, J. NeuroPhysiol.,. 54: 1396–1411.PubMedGoogle Scholar
  21. Euler, C. von, 1977, The functional organization of the respiratory phase switching mechanisms, Fed. Proc., 36: 2375–2380.Google Scholar
  22. Euler, C. Von, 1983, On the origin and pattern control of breathing rhythmicity in mammals, in: Roberts A., Roberts B., eds., “Neural origin of rhythmic movements”, Symp. Soc. Exp. Biol., pp. 469–485.Google Scholar
  23. Feldman, J. L., and Grillner, S., 1983, Control of vertebrate respiration and locomotion: a brief account, Physiologist. 26: 310–316.PubMedGoogle Scholar
  24. Grillner, S., 1981, Control of locomotion in bipeds, tetrapods, and fish, in: “Handbook of Physiology”, The Nervous System, v.2, Motor Control, Ed. by V. Brooks, Baltimore: Warverly Press, p. 1179–1236.Google Scholar
  25. Kahn, J. A., and Roberts A., 1982, Experiments on the central pattern generator for swimming in amphibian embryos, Phil.Trans. R. Soc. 296B: 229–243.CrossRefGoogle Scholar
  26. Kandel, E. R., 1976, The Cellular Basis of Behaviour, Freeman a. Co., San Francisco.Google Scholar
  27. Maynard, D. M., and Selverston, A. I., 1975, Organization of the stomatogastric ganglion of the spiny lobster, IV. The pyloric system, J. Comp. Physiol., 100: 161–182.CrossRefGoogle Scholar
  28. Merickel, M., and Gray, R., 1980, Investigation of burst generation by the electrically coupled cyberchron network in the snail Helisoma using a single-electrode voltage clamp, J. Neurobiol. 11: 73–102.PubMedCrossRefGoogle Scholar
  29. Miller, J. P., and Selverston, A. I., 1982a, Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons, II Oscillatory properties of pyloric neurons, J. Neurophysiol., 48: 1378–1391.PubMedGoogle Scholar
  30. Miller, J. P., and Selverston, A. I., 1982b, Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons, IV. Network properties of pyloric system, J.Neurophysiol.,. 48: 1416–1432.PubMedGoogle Scholar
  31. Orlovsky, G. N., and Shik, M. L., 1976, Control of locomotion: a neurophysiological analysis of the cat locomotor system. Internat, Rev. Physiol., NeuroPhysiol., 110: 281–317.Google Scholar
  32. Roberts, A., and Kahn, J. A., 1982, Intracellular recordings from spinal neurons during “swimming” in paralysed amphibian embryos, Phil. Trans. Roy. Soc. 296B: 213–228.CrossRefGoogle Scholar
  33. Roberts, A., Roberts, B. L., eds., 1983, Neural origin of rhythmic movements, Cambridge Univ. Press.Google Scholar
  34. Rose, R. M., and Benjamin, P. R., 1981, Interneuronal control of feeding in the pond snail Lymnaea stagnalis, II. The interneuronal mechanism generating feeding cycles, J. Exp. Biol. 92: 203–228.Google Scholar
  35. Sakharov, D. A., 1960, On rhythmic activity of pedal ganglia in the pteropodial mollusc Clione limacina, Biol. Sci., 3: 60–62, in Russian.Google Scholar
  36. Satterlie, R.A., 1985, Reciprocal inhibition and postinhibitory rebound produce reverberation in a locomotor pattern generator, Science. 229: 402–404.PubMedCrossRefGoogle Scholar
  37. Satterlie, R. A., LaBarbera, M., and Spencer, A. N., 1985, Swimming in the pteropod mollusc, Clione limacina. I. Behaviour and morphology, J. Exp. Biol. 116: 189–204.Google Scholar
  38. Satterlie, R. A., and Spencer, A. N., 1985, Swimming in the pteropod mollusc, Clione limacina. II, Physiology. J. Exp. Biol. 116: 205–222.Google Scholar
  39. Selverston, A. I., ed., 1985, Model neural networks and behavior, Plenum Press, New York.Google Scholar
  40. Selverston, A. I., and Miller, J. P., 1980, Mechnisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons, I. Pyloric system, J. Neurophysiol.,. 44: 1102–1121.PubMedGoogle Scholar
  41. Shik, M. L., and Orlovsky, G. N., 1976, Neurophysiology of locomotor automation Physiol., Revs., 56: 465–501.Google Scholar
  42. Soffe, S. R., Clarke, J. D. W., and Roberts, A., 1984, Activity of commissural interneurons in spinal cord of Xenopus embryos, J. Neurophysiol., 51: 1257–1267.PubMedGoogle Scholar
  43. Stein, P. G., 1978, Motor systems, with specific reference to the control of locomotion, Ann. Rev. Neurosci., 1: 61–81.PubMedCrossRefGoogle Scholar
  44. Stent, G. S., Thompson, W. J., and Calabrese, R. L., 1979, Neural control of heartbeat in the leech and in some other invertbrates, Physiol., Rev., 59: 101–136.Google Scholar
  45. Stewart, W. W., 1978, Functional connection between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer, Cell 14: 741–759.PubMedCrossRefGoogle Scholar
  46. Stewart, W. W., 1981, Lucifer dyes-highly fluorescent dyes for biological tracing, Nature. 292: 17–21.PubMedCrossRefGoogle Scholar
  47. Tazaki, K., and Cooke, I. M., 1979a, Spontaneous electrical activity and interaction of large and small cells in cardiac ganglion of the crab, Portunos sanguinolentus. J. Neurophysiol., 42: 975–999.PubMedGoogle Scholar
  48. Tazaki, K., and Cooke, I. M., 1979b, Isolation and characterization of slow depolarizing responses of cardiac ganglion neurons in the crab, Portunos sanguinolentus. J. Neurophysiol. 42: 1000–1021.PubMedGoogle Scholar
  49. Vagner, N. P., 1885, Invertebrates in the White Sea, in Russian.Google Scholar
  50. Wyman, R. J., 1977, Neural generation of the breathing rhythm, Rev. Physiol., 39: 417–448.CrossRefGoogle Scholar
  51. Yamagishi, H., and Ebara, A., 1985, Spontaneous activity and pacemaker property of neurons in the cardiac ganglion of an isopod, Ligia exotica, Comp. Biochem. Physiol., 81A: 55–62.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Yu. I. Arshavsky
    • 1
  • T. G. Deliagina
    • 1
  • I. M. Gelfand
    • 1
  • G. N. Orlovsky
    • 1
  • Yu. V. Panchin
    • 1
  • G. A. Pavlova
    • 1
  1. 1.Institute of Problems of Inf ormation Transmission, Academy of Sciences, MoscowMoscow State UniversityMoscowUSSR

Personalised recommendations