ENDOR of Exchangeable Protons of the Reduced Intermediate Acceptor in Reaction Centers from Rhodobacter sphaeroides R-26

  • G. Feher
  • R. A. Isaacson
  • M. Y. Okamura
  • W. Lubitz
Chapter
Part of the NATO ASI Series book series (NSSA, volume 149)

Abstract

To understand quantitatively the electron transfer kinetics in reaction centers (RCs) one needs to know both the spatial, three-dimensional, structure as well as the electronic structure of the reactants. The advances made in the determination of the three-dimensional structure of RCs in Rp. viridis and Rb. sphaeroides were presented earlier at this Conference by H. Deisenhofer, D. Tiede and our group. In this communication we would like to report on the results of investigations of the electronic structure of the intermediate acceptor I⨪. The acceptor, I, is believed to be a bacteriopheophytin a (Bphe a), that receives an electron from the singlet excited primary donor in ~ 4 picoseconds and passes it on to a quinone acceptor with a characteristic time of ~ 200 ps (for a review see ref. 1). In general, the charge transfer in photosynthesis is a one electron process that results in the formation of donor cation and acceptor anion radicals.

Keywords

Reaction Center Carbonyl Oxygen ENDOR Spectrum ENDOR Line Exchangeable Proton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Kirmaier, and D. Holten, Primary photochemistry of reaction centers from the Photosynthetic Purple Bacteria, Photosynth. Res. 13: 225–260 (1987).CrossRefGoogle Scholar
  2. 2.
    W. Lubitz, F. Lendzian, M. Plato, K. Möbius, and E. Tränkle, ENDOR studies of the primary donor in bacterial reaction centers, in: “Antennas and Reaction Centers of Photosynthetic Bacteria — Structure, Interactions and Dynamics,” Michel-Beyerle, ed., Springer-Verlag, Berlin, pp. 164–173 (1985).CrossRefGoogle Scholar
  3. 3.
    G. Feher, R. A. Isaacson, M. Y. Okamura, and W. Lubitz, ENDOR of semiquinones in RCs from Rhodopseudomonas sphaeroides, in: “Antennas and Reaction Centers of Photosynthetic Bacteria — Structure, Interactions and Dynamics,” Michel-Beyerle, ed., Springer-Verlag, Berlin, pp. 174–189 (1985).CrossRefGoogle Scholar
  4. 4.
    J. Fajer, M. S. Davis, and A. Forman, ENDOR and ESR characteristics of bacteriopheophytin and bacteriochlorophyll anion radicals, Biophys. J. Abstr. 17:150 (1977a).Google Scholar
  5. 5.
    G. Feher, R. A. Isaacson, and M. Y. Okamura, Comparison of EPR and ENDOR spectra of the transient acceptor in reaction centers of Rhodopseudomonas sphaeroides with those of bacteriochlorophyll and bacteriopheophytin radicals, Biophys. J. (Abstr.) 17:149 (1977).CrossRefGoogle Scholar
  6. 6.
    G. Feher, R. A. Isaacson, M. Y. Okamura, and W. Lubitz, ENDOR of the reduced intermediate electron acceptor in RCs of R. sphaeroides, Biophys. J. (Abstr.) 51:377a (1987).Google Scholar
  7. 7.
    G. Feher, R. A. Isaacson, M. Y. Okamura, W. Lubitz, ENDOR of exchangeable protons of the reduced intermediate acceptor in RCs from Rb. sphaeroides R-26, Biophys. J. Abstr., in press (1988).Google Scholar
  8. 8.
    G. Feher and M. Y. Okamura, Chemical compositon and properties of reaction centers, in: “The Photosynthetic Bacteria,” R. K. Clayton and W. R. Sistrom, eds., Plenum Press, New York, pp. 349–386 (1978).Google Scholar
  9. 9.
    M. Y. Okamura, R. A. Isaacson, G. Feher, Spectroscopic and kinetic properties of the transient intermediate acceptor in reaction centers of Rhodopseudomonas sphaeroides, Biochim. Biophys. Acta 546:394–417 (1979).PubMedCrossRefGoogle Scholar
  10. 10.
    J. Fajer, A. Forman, M. S. Davis, L. D. Spaulding, D. C. Brune and R. M. Felton, Anion radicals of bacteriochloropyll a and bacteriopheophytin a. Electron spin resonance and electron nuclear double resonance studies, J. Am. Chem. Soc. 99: 4134–4140 (1977).PubMedCrossRefGoogle Scholar
  11. 11.
    W. Froncisz and J. Hyde, The loop-gap resonator: A new microwave lumped circuit ESR sample structure, J. Mag. Res. 47: 515–521 (1982).Google Scholar
  12. 12.
    H. Michel, O. Epp, and J. Deisenhofer, Pigment-protein interactions in the photosynthetic reaction center from Rhodopseudomonas viridis, EMBO J. 5:2445–2451 (1986).Google Scholar
  13. 13.
    J. P. Allen, G. Feher, T. O. Yeates and D. C. Rees, Structure analysis of the reaction center from Rhodopseudomonas sphaeroiodes: Electron density map at 3.5Å resolution, in: “Progress in Photosynthesis Research,” Vol. I, pp. I.4.375–I.4.378, J. Biggins, ed., Martinus Nijhoff, Boston (1987).Google Scholar
  14. 14.
    J. P. Allen, G. Feher, T. O. Yeates, H. Komiya, and D. C. Rees, Structure of the reaction center from Rhodobacter sphaeroides R-26. II. The protein subunits, Proc. Natl. Acad. Sci. 84: 6162–6166 (1987).PubMedCrossRefGoogle Scholar
  15. 15.
    J. P. Allen, G. Feher, T. O. Yeates, H. Komiya and D. C. Rees, Structure of the reaction center from Rhodobacter sphaeroides R-26 and 2.4.1. These proceedings.Google Scholar
  16. 16.
    P. I. O’Malley, T. K. Chandrashekar, and G. T. Babcock, ENDOR characterization of hydrogen-bonding to immobilized quinone anion radicals, in: “Antennas and Reaction Centers of Photosynthetic Bacteria — Structure, Interactions and Dynamics,” Michel-Beyerle, ed., Springer-Verlag, Berlin, pp. 339–344 (1985).CrossRefGoogle Scholar
  17. 17.
    R. P. Feynman, Statistical Mechanics: A Set of Lectures, pp. 53-55, W. A. Benjamin, Reading, PA. (1972).Google Scholar
  18. 18.
    G. Feher, M. Y. Okamura, and D. Kleinfeld, Electron transfer reactions in bacterial photosynthesis: charge recombination kinetics as a structure probe, in: “Protein Structure: Molecular and Electronic Reactivity,” Robert Austin, Ephraim Buhks, Britton Chance, Don DeVault, P. Leslie Dutton, Hans Frauenfelder and Vittallii I. Goldanskii, eds., Springer Verlag, New York, pp. 399–421 (1987).Google Scholar
  19. 19.
    E. J. Bylina and D. C. Youvan, Site specific mutagenesis of the bacterial reaction center from Rhodobacter capsulata. These Proceedings.Google Scholar
  20. 20.
    B. Robert, M. Lutz and D. M. Tiede, Selective photochemical reduction of either of the two bacteriopheophytins in reaction centers from Rhodopseudomonas sphaeroides R-26, FEBS Lett. 183: 326–330 (1985).CrossRefGoogle Scholar
  21. 21.
    W. Lubitz, F. Lendzian, and K. Möbius, The bacteriopheophytin a anion radical. A solution ENDOR and TRIPLE resonance study, Phys. Chem. Letters 84: 33–38 (1981).CrossRefGoogle Scholar
  22. 22.
    M. Plato, personal communication.Google Scholar
  23. 23.
    L. K. Hanson and J. Fajer, personal communication.Google Scholar
  24. 24.
    D. F. Bocian, N. J. Boldt, B. W. Chadwick, and H. A. Frank, Near-infrared-excitation resonance Raman spectra of bacterial photosynthetic reaction centers, FEBS Lett. 214: 92–96 (1987).PubMedCrossRefGoogle Scholar
  25. 25.
    E. Nabedryk, W. Mäntele and J. Breton, FTIR spectroscopic investigations of the intermediate electron acceptor photoreduction in purple photosynthetic bacteria and green plants. These Proceedings.Google Scholar
  26. 26.
    D. D. DeVault, “Quantum-Mechanical Tunnelling in Biological Systems,” Cambridge University Press (1984).Google Scholar
  27. 27.
    R. A. Marcus and N. Sutin, Electron transfers in chemistry and biology, Biochim. Biophys. Acta 811: 265–302 (1985).CrossRefGoogle Scholar
  28. 28.
    M. Y. Okamura and G. Feher, Isotope effect on electron transfer in reaction centers from R. sphaeroides, Proc. Natl Acad. Sci. USA 83: 8152–8156 (1986).PubMedCrossRefGoogle Scholar
  29. 29.
    C. Kirmaier and D. Holten (personal communication).Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • G. Feher
    • 1
  • R. A. Isaacson
    • 1
  • M. Y. Okamura
    • 1
  • W. Lubitz
    • 2
  1. 1.University of California, San DiegoLa JollaUSA
  2. 2.Freie UniversitätBerlinGermany

Personalised recommendations