The Stark Effect in Photosynthetic Reaction Centers from Rhodobacter sphaeroides R-26, Rhodopseudomonas viridis and the D1D2 Complex of Photosystem II from Spinach

  • M. Lösche
  • G. Feher
  • M. Y. Okamura
Chapter
Part of the NATO ASI Series book series (NSSA, volume 149)

Abstract

At the predecessor of this conference in Feldafing (1985) great interest in the Stark effect in photosynthetic reaction centers (RCs) was expressed [1]. At that time only an abstract [2] had been published showing that the bacteriochlorophyll dimer (BChl2; the primary donor) had a large Stark effect compared to the other (accessory) chromophores. In the intervening period, several groups have contributed to this topic [3–5]. In this report we present detailed spectra and quantitative data on RCs from several organisms, and compare the results with those obtained by other groups and with theoretical predictions. Since much of the work has already been published, we shall endeavor to minimize duplication and focus on newer developments, qualitative and quantitative discussions, and prospects for the future.

Keywords

Dipole Moment Reaction Center Photosynthetic Bacterium Transition Moment Stark Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Jortner and M. E. Michel-Beyerle, Some aspects of energy transfer in antennas and electron transfer in reaction centers of photosynthetic bacteria, in: “Antennas and Reaction Centers of Photosynthetic Bacteria,” M. E. Michel-Beyerle, ed. Springer, Berlin, pp. 345–366 (1985).CrossRefGoogle Scholar
  2. 2.
    D. deLeeuw, M. Malley, G. Buttermann, M. Y. Okamura, and G. Feher, The Stark effect in reaction centers from Rhodopseudomonas sphaeroides, Biophys. J. (Abstr.), 111a (1982).Google Scholar
  3. 3.
    D. J. Lockhart and S. G. Boxer, Magnitude and direction of the change in dipole moment associated with excitation of the primary electron donor in Rhodopseudomonas sphaeroides reaction centers, Biochemistry 26: 664–668 (1987). (Correction in Biochemistry 26:2958 (1987)).CrossRefGoogle Scholar
  4. 4.
    M. Lösche, G. Feher and M. Y. Okamura, The Stark effect in reaction centers from Rhodobacter sphaeroides R-26 and Rhodopseudomonas viridis, Proc. Natl. Acad. Sci. USA 84:7537–7541 (1987).PubMedCrossRefGoogle Scholar
  5. 5.
    H. P. Braun, M. E. Michel-Beyerle, J. Breton, S. Buchanan and H. Michel, Electric field effect on absorption spectra of reaction centers of Rb. sphaeroides and Rps. viridis, FEBS Lett. 221: 221–225 (1987).CrossRefGoogle Scholar
  6. 6.
    W. Liptay, Dipole moments and polarizabilities of molecules in excited electronic states, in “Excited States”, E. C. Lim, ed., Academic Press, Inc., New York, pp. 129–229 (1974).Google Scholar
  7. 7.
    R. Reich and S. Schmidt, Uber den Einfluss elektrischer Felder auf das Absorptionsspektrum von Farbstoffmolekülen in Lipidschichten. I. Theorie, Ber. Bunsenges. Phys. Chem. 76: 589–598 (1972).Google Scholar
  8. 8.
    R. Reich, Intrinsic probes of charge separation, in “Light-Induced Charge Separation in Biology and Chemistry”, H. Gerischer and J. J. Katz, eds., Verlag Chemie, Weinheim (West Germany), pp. 361–387 (1979).Google Scholar
  9. 9.
    C. J. F. Böttcher, “Theory of Electric Polarization”, Elsevier, New York, pp. 159–204 (1973).CrossRefGoogle Scholar
  10. 10.
    M. Malley, G. Feher and D. Mauzerall, The Stark effect in porphyrins, J. Mol. Spectrosc. 25: 544–548 (1968).CrossRefGoogle Scholar
  11. 11.
    O. Nanba and K. Satoh, Isolation of a photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559, Proc. Natl. Acad. Sci. USA 84: 109–112 (1987).PubMedCrossRefGoogle Scholar
  12. 12.
    M. Y. Okamura, K. Satoh, R. A. Isaacson, and G. Feher, Evidence of the primary charge separation in the D1 D2 complex of photosystem II from spinach: EPR of the triplet state, in: “Progress in Photosynthesis Research,” Vol. I, pp. 379–381, J. Biggins, ed., Martinus Nijhoff, Boston (1986).Google Scholar
  13. 13.
    M. Lösche, K. Satoh, G. Feher, and M.Y. Okamura, Stark effect in PSII from spinach, Biophys. J. (Abstract), February 1988, in press.Google Scholar
  14. 14.
    J. C. Williams, L. A. Steiner, and G. Feher, Primary Structure of the Reaction Center From Rhodopseudomonas sphaeroides, Proteins 1:312–325 (1986).PubMedCrossRefGoogle Scholar
  15. 15.
    R. A. Marcus, Superexchange versus an intermediate BChl mechanism in reaction centers of photosynthetic bacteria, Chem. Phys. Lett. 113: 471–477 (1987).CrossRefGoogle Scholar
  16. 16.
    M. E. Michel-Beyerle, M. Plato, J. Deisenhofer, H. Michel, M. Bixon and J. Jortner, Unidirectionality of charge separation in reaction centers of photosynthetic bacteria, Biochim. Biophys. Acta, in press.Google Scholar
  17. 17.
    P. O. J. Scherer and S. F. Fischer, On the Stark effect for bacterial photosynthetic reaction centers, Chem. Phys. Lett. 131: 153–159 (1986).CrossRefGoogle Scholar
  18. 18.
    A. Ogrodnik, N. Remy-Richter, M. E. Michel-Beyerle and R. Feick, Observation of activationless recombination in reaction centers of R. sphaeroides. A new key to the primary electron-transfer mechanism, Chem. Phys. Letters 135: 576–581 (1987).CrossRefGoogle Scholar
  19. 19.
    R. A. Marcus, Electron transfer and the bacterial photosynthetic reaction centers; in these Proceedings.Google Scholar
  20. 20.
    S. F. Fischer and P. O. J. Scherer, Analysis of different mechanisms for the initial charge separation within the reaction center Rps. viridis; in these Proceedings.Google Scholar
  21. 21.
    W. W. Parson and A. Warshel, Calculations of electronic interactions in reaction centers; in these Proceedings.Google Scholar
  22. 22.
    W. W. Parson, N. W. T. Woodbury, M. Becker, C. Kirmaier and D. Holten, Kinetics and mechanisms of initial electron-transfer reactions in Rhodopseudomonas sphaeroides reaction centers, in: “Antennas and Reaction Centers of Photosynthetic Bacteria,” M. E. Michel-Beyerle, ed. Springer, Berlin, pp. 278–285.Google Scholar
  23. 23.
    R. S. Mulliken and W. B. Person, “Molecular Complexes”, Wiley-Interscience, New York, pp. 9–22 (1969).Google Scholar
  24. 24.
    J. P. Allen, G. Feher, T. O. Yeates, H. Komiya and D. C. Rees, Structure of the reaction center from Rhodobacter sphaeroides R-26: The cofactors, Proc. Natl. Acad. Sci. USA 84: 5730–5734 (1987).PubMedCrossRefGoogle Scholar
  25. 25.
    H. Michel, O. Epp and J. Deisenhofer, Pigment-protein interactions in the photosynthetic reaction centers from Rhodopseudomonas viridis, EMBO J. 5: 2445–2451 (1986).PubMedGoogle Scholar
  26. 26.
    W. W. Parson and A. Warshel, Spectroscopic properties of photosynthetic reaction centers. II. Application of the theory to Rhodopseudomonas viridis, J. Am. Chem. Soc. 109: 6152–6163 (1987).CrossRefGoogle Scholar
  27. 27.
    M. Plato, personal communication.Google Scholar
  28. 28.
    P. Jursinic and Govindjee, Temperature dependence of delayed light emission in the 6 to 340 microsecond range after a single flash in chloroplasts, Photochem. Photobiol. 26:617–628 (1977).CrossRefGoogle Scholar
  29. 29.
    A. V. Shuvalov, A. V. Klevanik, A. V. Sharkov, Ju. A. Matveetz, and P. G. Krukov, Picosecond detection of BChl-800 as an intermediate electron carrier between selectively excited P870 and bacteriopheophytin in Rhodospirillum rubrum reaction centers, FEBS Lett. 91:135-139.Google Scholar
  30. 30.
    N. W. Woodbury, M. Becker, D. Middendorf and W. W. Parson, Picosecond kinetics of the initial photochemical electron-transfer reaction in bacterial photosynthetic reaction centers, Biochemistry 24: 7516–7521 (1985).PubMedCrossRefGoogle Scholar
  31. 31.
    J. L. Martin, J. Breton, A. J. Hoff, A. Migus and A. Antonetti, Femtosecond spectroscopy of electron transfer in the reaction center of the photosynthetic bacterium Rhodopseudomonas sphaeroides R-26: Direct electron transfer from the dimeric bacteriochlorophyll primary donor to the bacteriopheophytin acceptor with a time constant of 2.8 ± 0.2 psec, Proc. Natl. Acad. Sci. USA 83: 957–961 (1986).PubMedCrossRefGoogle Scholar
  32. 32.
    J. Breton, J. L. Martin, A. Migus, A. Antonetti and A. Orszag, Femtosecond spectroscopy of excitation energy transfer and initial charge separation in the reaction center of the photosynthetic bacterium Rhodopseudomonas midis, Proc. Natl. Acad. Sci. USA 83: 5121–5125 (1986).PubMedCrossRefGoogle Scholar
  33. 33.
    A. Gopher, Y. Blatt, M. Schönfeld, M. Y. Okamura, G. Feher, and M. Montai, The effect of an applied field on the charge recombination kinetics in reaction centers reconstituted in planar lipid bilayers, Biophys. J. 48: 311–320 (1985).PubMedCrossRefGoogle Scholar
  34. 34.
    Z. D. Popovic, G. J. Kovacs, P. S. Vincent, G. Alegria, and P. L. Dutton, Electric field dependence of recombination kinetics in reaction centers of photosynthetic bacteria, Chem. Phys. 110: 227–237 (1986).CrossRefGoogle Scholar
  35. 35.
    T. Arno, A. Gopher, M. Y. Okamura, and G. Feher, Dependence of the recombination rate D+Q A → DQA on the electric field applied to reaction centers from Rb. sphaeroides R-26 incorporated into a planar lipid bilayer, Biophys. J. (Abstract), February 1988, in press.Google Scholar
  36. 36.
    G. Feher, T. Arno, and M. Y. Okamura, The effect of an electric field on the charge recombination rate of D+Q A → DQA in reaction centers from Rhodobacter sphaeroides R-26; in these Proceedings.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • M. Lösche
    • 1
  • G. Feher
    • 1
  • M. Y. Okamura
    • 1
  1. 1.University of California, San DiegoLa JollaUSA

Personalised recommendations