Heterochrony in Ammonites

  • Neil H. Landman
Part of the Topics in Geobiology book series (TGBI, volume 7)

Abstract

Ammonites are externally shelled cephalopods and range in geologic age from the Devonian to the Late Cretaceous. They comprise nine orders that may be informally grouped into the paleo-, meso-, and neoammonoidea. The paleoammonoidea consists of the Devonian-Permian goniatites, anarcestids, clymeniids, and prolecanitids. The mesoammonoidea or ceratites range from the Permian to the Triassic. The neoammonoidea consists of the phylloceratids, lytoceratids, ammonitids, and ancyloceratids and ranges from the Jurassic to the Cretaceous.

Keywords

Early Ontogeny Body Chamber Primary Suture Shell Diameter Whorl Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberch, P., Gould, S. J., Oster, G. F., and Wake, D. B., 1979, Size and shape in ontogeny and phylogeny, Paleobiology 5(9): 296–317.Google Scholar
  2. Arkell, W. J., 1957, Introduction to Mesozoic Ammonoidea, in: Treatise on Invertebrate Paleontology, Part L (R. C. Moore, ed.), pp. 81–129, Geological Society of America and University of Kansas Press, Lawrence, Kansas.Google Scholar
  3. Arnold, J. M., and Carlson, B. A., 1986, Living Nautilus embryos: Preliminary observations, Science 232: 73–76.PubMedCrossRefGoogle Scholar
  4. Bandel, K., 1982, Morphologie und Bildung der frueontogenetischen Gehaeuse bei conchiferen Mollusken, Facies 7: 1–198.CrossRefGoogle Scholar
  5. Bandel, K., 1986, The ammonitella: A model of formation with the aid of the embryonic shell of archaeogastropods, Lethaia 19: 171–180.CrossRefGoogle Scholar
  6. Bandel, K., and Boletzky, S. V., 1979, A comparative study of the structure, development, and morphological relationships of chambered cephalopod shells, Veliger 21: 313–354.Google Scholar
  7. Bandel, K., Landman, N. H., and Waage, K. M., 1982, Micro-ornament on early whorls of Mesozoic ammonites: Implications for early ontogeny, J. Paleontol. 56(2):386–391.Google Scholar
  8. Bayer, U., 1972, Zur ontogenie und variabilitaet der Jurassischen Ammoniten Leioceras opalinum, Neues Jahrb. Geol. Paläontol. Abh. 140(3):306–327.Google Scholar
  9. Birkelund, T., 1965, Ammonites from the Upper Cretaceous of West Greenland, Medd. Gronl. 171: 1–192.Google Scholar
  10. Birkelund, T., 1980, Ammonoid shell structure, in: The Ammonoidea (M. R. House and J. R. Senior, eds.), pp. 177–214, Academic Press, New York.Google Scholar
  11. Bogoslovsky, B. T., 1976, Early ontogeny and origin of clymenid ammonoids, Paleontol J. 10(2): 150–158.Google Scholar
  12. Boletzky, S. V., 1974, The “larvae” of Cephalopoda: A review, Thalassia Jugoslavica 10: 45–76.Google Scholar
  13. Buckman, S. S., 1887–1907, A monograph of the ammonites of the Inferior Oolite Series, Palaeontographr. Soc. 40–61:1–456.Google Scholar
  14. Buckman, S. S., 1909, Yorkshire Type Ammonites, Vol. 1, No. 1, pp. 1–12, Wesley, London.Google Scholar
  15. Buckman, S. S., 1918, Jurassic chronology: I—Lias, Geol. Soc. Lond. Q. J. 73: 257–327.CrossRefGoogle Scholar
  16. Callomon, J. H., 1963, Sexual dimorphism in Jurassic ammonites, Trans. Leicester Litt. Philos. Soc. 57:21–66.Google Scholar
  17. Callomon, J. H., 1980, Dimorphism in Ammonoids, in: The Ammonoidea (M. R. House and J. R. Senior, eds.), pp. 257–273, Academic Press, New York.Google Scholar
  18. Chamberlain, J. A., 1978, Permeability of the siphuncular tube of Nautilus: Its ecologic and paleoecologic implications, Neues Jahrb. Geol. Paläontol. Monatsch. 3: 129–142.Google Scholar
  19. Cobban, W. A., 1951, Scaphitoid Cephalopods of the Colorado Group, U. S. Geological Survey Professional Paper 239.Google Scholar
  20. Currie, E. D., 1942, Growth changes in the ammonite Promicroceras marstanense, Spath., Proc. Soc. Ed. B 61: 344–367.Google Scholar
  21. Currie, E. D., 1943, Growth stages in some species of Promicroceras, Geol. Mag. 80: 15–22.CrossRefGoogle Scholar
  22. Currie, E. D., 1944, Growth stages in some Jurrassic ammonites, Trans. R. Soc. Ed. 61(6): 171–198.CrossRefGoogle Scholar
  23. Doguzhayeva, L., 1982, Rhythms of ammonoid shell secretion, Lethaia 15: 385–394.CrossRefGoogle Scholar
  24. Doguzhayeva, L., and Mutvei, H., 1986, Retro-and prochoanitic necks in ammonoids, and transition between them, Palaeontogr. Abt. A 195:(1–3):1–18.Google Scholar
  25. Dommergues, J. L., 1982, L’évolution des Liparoceratidae “capricornes” (Ammonitina, Jurassique, Lias moyen): Diversité des rythmes évolutifs, in: Modalités, Rythmes et Mécanismes de V Evolution Biologiques, pp. 233-236, CNRS, Paris.Google Scholar
  26. Dommergues, J. L., 1986, Les Dactylioceratidae du Carixien et du Domérian basai, un groupe monophylétique. Les Reynesocoeloceratinae nov. subfam., Bull. Sci. Bourg. 39: 1–26.Google Scholar
  27. Dommergues, J. L., 1987, L’évolution chez les Ammonitina du Lias moyen (Carixien, Domérian basal) en Europe Occidentale, Documents des Laboratories de Géologie, Lyon No. 98.Google Scholar
  28. Dommergues, J. L., 1988, Can ribs and septa provide an alternative standard for age in ammonite ontogenetic studies. Lethaia (in press).Google Scholar
  29. Dommergues, J. L., David, B., and Marchand D., 1986, Les relations ontogenèse-phylogenèse: Applications paléontologiques, Géobios 19(3): 335–356.CrossRefGoogle Scholar
  30. Donovan, D. T., 1973, The influence of theoretical ideas on ammonite classification from Hyatt to Trueman, pp. 1-16, University of Kansas Paleontological Contributions, Paper 62.Google Scholar
  31. Druschits, V. V., Doguzhayeva, L. A., and Mikhaylova, I. A., 1977, The structure of the ammonitella and the direct development of ammonites, Paleontol. J. 2: 188–199.Google Scholar
  32. Glenister, B. F., 1985, Terminal progenesis in Late Paleozoic ammonoid families, in: Abstracts, 2nd International Cephalopod Symposium, Tübingen, p. 9.Google Scholar
  33. Gould, S. J., 1977, Ontogeny and Phylogeny, Harvard University Press, Cambridge.Google Scholar
  34. Hewitt, R. A., 1985, Numerical aspects of suturai ontogeny in the Ammonitina and Lytoceratina, Neues Jahrb. Geol. Paläontol. Abh. 170(3):273–290.Google Scholar
  35. Hewitt, R. A., and Westermann, G. E. G., 1986, Function of complexly fluted septa in ammonoid shells I. Mechanical principals and functional models, Neues Jahrb. Geol. Paläontol. Abh. 172(1): 47–69.Google Scholar
  36. Hirano, H., 1981, Growth rates in Nautilus macromphalus and ammonoids: Its implications, in: International Symposium on Concepts and Methods in Paleontology Barcelona 1981 (J. Martinell, ed.), pp. 141–146, University of Barcelona, Barcelona.Google Scholar
  37. House, H. R., 1965, A study in the Tomoceratidae: The succession of Tornoceras in the North American Devonian, Philos. Trans. R. Soc. Lond. B 250: 79–130.CrossRefGoogle Scholar
  38. Hyatt, A., 1866, On the agreement between the different periods in the life of the individual shell and the collective life of the tetrabranchiate cephalopods, Boston Soc. Nat. Hist. Proc. 10: 302–303.Google Scholar
  39. Hyatt, A., 1883, Fossil cephalopods in the museum of comparative zoology, Am. Assoc. Adv. Sci. Proc. 32: 323–361.Google Scholar
  40. Hyatt, A., 1889, Genesis of the Arietidae, Smithsonian Contributions to Knowledge, Vol. 26, No. 673.CrossRefGoogle Scholar
  41. Hyatt, A., 1894, Phyiogeny of an acquired characteristic, Am. Phil. Soc. Proc. 32(143): 349–647.Google Scholar
  42. Karpinski, A. P., 1889, Über die Ammoneen der Artinsk-Stufe und einige mit denselben verwandte carbonische Formen, Acad. Imp. Sci. St. Petersbourg Mém. 7e Ser. 37(2):l–104.Google Scholar
  43. Karpinski, A. P., 1890, Zur Ammoneen-Fauna der Artinsk-Stufe, Acad. Imp. Sci. St. Petersbourg Bull. (Mélanges Géol. Paléontol.) 1: 65–80.Google Scholar
  44. Kennedy, W. J., 1977, Ammonite evolution, in: Patterns of Evolution (A. Hallam, ed.), pp. 251–304, Elsevier, Amsterdam.Google Scholar
  45. Kennedy, W. J., and Cobban, W. A., 1976, Aspects of ammonite biology, biogeography, and biostratigraphy, Spec. Pap. Palaeontol. 17: 1–33.Google Scholar
  46. Kennedy, W. J. and Wright, C. W., 1985, Evolutionary patterns in late Cretaceous ammonites, Spec. Pap. Paloeontol. 33: 131–143.Google Scholar
  47. Kulicki, C., 1974, Remarks on the embryogeny and postembryonal development of ammonites, Acta Palaeontol. Pol. 20: 201–224.Google Scholar
  48. Kulicki, C., 1979, The ammonite shell: Its structure, development and biological significance, Acta Palaeontol. Pol. 39: 97–142.Google Scholar
  49. Kullmann, J., and Wiedmann, J., 1982, Bedeutung der Rekapitulationsentwicklung in der Paläontologie, Verh. Naturwiss. Ver. Hamburg (N.F.) 25: 71–92.Google Scholar
  50. Landman, N. H., 1985, Preserved ammonitellas of Scaphites (Ammonoidea, Ancyloceratina), Am. Mus. Novit. 2815: 1–10.Google Scholar
  51. Landman, N. H., 1987a, Early ontogeny of Mesozoic ammonites and nautilids, in: Cephalopods—Present and Past (J. Wiedmann and J. Kollmann, eds.), pp. 215–228, Schweizerbart’sche Verlagsbuchhandlung, Stuttgart.Google Scholar
  52. Landman, N. H., 1987b, Ontogeny of Upper Cretaceous (Turonian-Santonian) scaphitid ammonites from the Western Interior of North America: Systematics, developmental patterns, and life history, Am. Mus. Bull. 185(2): 117–241.Google Scholar
  53. Landman, N. H., and Bändel, K., 1985, Internal structures in the early whorls of Mesozoic ammonites, Am. Mus. Novit. 2823: 1–21.Google Scholar
  54. Landman, N. H., and Cochran, J. K., 1987, Growth and longevity of Nautilus, in: Nautilus: Biology and Paleobiology of a Living Fossil (W. B. Saunders and N. H. Landman, eds.), pp. 401–420, Plenum Press, New York.Google Scholar
  55. Lehmann, U., 1981, Ammonites: Their Life & Their World, Cambridge University Press, New York.Google Scholar
  56. Makowski, H., 1962, Problems of sexual dimorphism in ammonites, Acta Palaeontol. Pol. 12: 1–92.Google Scholar
  57. Miller, A. K., and Furnish, W. M., 1958, Middle Pennsylvanian Schistoceratidae (Ammonoidea), J. Paleontol. 32(2): 253–268.Google Scholar
  58. Miller, A. K., Furnish, W. M., and Schindewolf, O. H., 1957, Paleozoic Ammonoidea, in: Treatise on Invertebrate Paleontology L (R. C. Moore, ed.), pp. 11–79, Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
  59. Newell, N. D., 1949, Phyletic size increase, an important trend illustrated by fossil invertebrates, Evolution 3: 103–124.PubMedCrossRefGoogle Scholar
  60. Obata, I., 1965, Allometry of Reesidites minimus, a Cretaceous ammonite species, Trans. Proc. Paleontol Soc. Japan N. S. 58: 39–63.Google Scholar
  61. Pavlov, A. P., 1901, Le Crétacé inférieur de la Russie et sa faune, Nouv. Mém. Soc. Imp. Nat. Moscou Livr. 21 (sér. nouv., 16).Google Scholar
  62. Raup, D. M., 1967, Geometric analysis of shell coiling: Coiling in ammonoids, J. Paleontol. 41: 43–65.Google Scholar
  63. Ruzhentsev, V. E., 1962, Superorder Ammonoidea. General section, in: Fundamentals of Paleontology, Vol. 5, Mollusca—Cephalopoda I. (V. E. Ruzhentsev, ed.), pp. 243–328, Izdatel’stvo Akademi Nauk USSR, Moscow.Google Scholar
  64. Saunders, W. B., 1983, Natural rates of growth and longevity of Nautilus belauensis, Paleobiology 9: 280–288.Google Scholar
  65. Schindewolf, O. H., 1929, Ontogenie und Phylogenie, Palaeontol. Z. 11: 54–67.Google Scholar
  66. Schindewolf, O. H., 1934, Über Epöken auf Cephalopoden-Gehäuse, Palaeontol. Z. 16: 15–31.Google Scholar
  67. Schindewolf, O. H., 1942, Evolution im Lichte der Paläontologie, Jen. Z. Med. Naturwiss. 75: 324–386.Google Scholar
  68. Schindewolf, O. H., 1950, Grundfragen der Paläontologie, Schweizebart’sche Verlagsbuchhandlung, Stuttgart.Google Scholar
  69. Schindewolf, O. H., 1954, On development, evolution, and terminology of ammonoid suture line, Harvard Univ. Mus. Comp. Zool. Bull. 112(3): 217–237.Google Scholar
  70. Seilacher, A., 1960, Epizoans as a key to ammonoid ecology, J. Paleontol. 34: 189–193.Google Scholar
  71. Smith, James P., 1898, The development of Lytoceras and Phylloceras, Calif. Acad. Sci. Proc. 3rd Ser. Geol. 1(4):129–161.Google Scholar
  72. Smith, James P., 1914, Acceleration of Development in Fossil Cephalopoda, Stanford University Publications University Series, Stanford, California.Google Scholar
  73. Spath, L. F., 1924, The ammonites of the Blue Lias, Geol. Assoc. Proc. 35: 186–211.CrossRefGoogle Scholar
  74. Spath, L. F., 1938, A Catalogue of the Ammonites of the Liassic Family Liparoceratidae, British Museum (Natural History), London.Google Scholar
  75. Tanabe, K., 1977, Functional evolution of Otoscaphites puerculus (Jimbo) and Scaphites planus (Yabe), Upper Cretaceous ammonites, Mem. Fac. Sci. Kyushu Univ. Ser. D Geol. 23(3): 367–407.Google Scholar
  76. Thompson, D’A. W., 1917, On Growth and Form, Cambridge University Press, Londpn.Google Scholar
  77. Trueman, A. E., 1919, The evolution of the Liparoceratidae, Geol. Soc. Lond. Q. J. 74: 247–298.CrossRefGoogle Scholar
  78. Trueman, A. E., 1922, Aspects of ontogeny in the study of ammonite evolution, J. Geol. 30: 140–143.CrossRefGoogle Scholar
  79. Trueman, A. E., 1941, The ammonite body chamber with special reference to the buoyancy and mode of life of the living ammonite, Q. J. Geol. Soc. Lond. 96: 339–383.CrossRefGoogle Scholar
  80. Waage, Karl M., 1968, The Type Fox Hills Formation, Cretaceous (Maestrichtian), South Dakota. Part 1. Stratigraphy and Paleoenvironments, Peabody Museum of Natural History Bulletin 27.Google Scholar
  81. Ward, P. D., 1985, Periodicity of chamber formation in chambered cephalopods: Evidence from Nautilus macromphalus and Nautilus pompilius, Paleobiology 11(4):438–450.Google Scholar
  82. Wells, M. J., and Wells, J., 1983, Cephalopods do it differently, New Sci. 100: 332–338.Google Scholar
  83. Westermann, G. E. G., 1954, Monographie der Otoitidae (Ammonoidea), Beih. Geol. Jahrb. Heft 15: 1–364.Google Scholar
  84. Westermann, G. E. G., 1958, The significance of septa and sutures in Jurassic ammonite systematics, Geol. Mag. 95: 441–455.CrossRefGoogle Scholar
  85. Westermann, G. E. G., 1966. Covariation and taxonomy of the Jurassic ammonite Sonninia adicra (Waagen), Neues Jahrb. Geol. Paläontol. Abh. 24:389–412.Google Scholar
  86. Westermann, G. E. G., 1971, Form, structure and function of shell and siphuncle in coiled Mesozic ammonoids, Life Sci. Contrib. R. Ont. Mus. 78: 1–39.Google Scholar
  87. Westermann, G. E. G., and Riccardi, A. C., 1985, Middle Jurassic ammonite evolution in the Andean province and emigration to Tethys, in: Lecture Notes in Earth Sciences (U. Bayer, ed.), pp. 6–34, Springer-Verlag, Berlin.Google Scholar
  88. Wiedmann, J., 1970, Problems der Lobenterminologie, Eclog. Geol. Helv. 63: 909–922.Google Scholar
  89. Wiedmann, J., and Kullmann, J., 1980, Ammonoid sutures in ontogeny and phylogeny, in: The Ammonoidea (M. R. House and J. R. Senior, eds.), pp. 215–255, Academic Press, New York.Google Scholar
  90. Wright, C. W., and Kennedy, W. J., 1979, Origin and evolution of the Cretaceous micromorph ammonite family Flickiidae, Paleontology 22(3): 685–704.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Neil H. Landman
    • 1
  1. 1.Department of InvertebratesAmerican Museum of Natural HistoryNew YorkUSA

Personalised recommendations