Classifying Heterochrony

Allometry, Size, and Time
  • Michael L. McKinney
Part of the Topics in Geobiology book series (TGBI, volume 7)

Abstract

Heterochrony is evolution via change in timing (and/or rate) of development. However, this oft-repeated definition threatens to dull by repetition the important fact that virtually all evolution involves such changes somewhere in the chain of developmental events. Whether size, shape, or behavior, phylogenetic change almost invariably springs from a change of rate or timing in the ontogeny of descendant individuals. [Since development is a series of highly contingent, interwoven processes, it is much simpler to change the rate or timing of ontogenetic processes rather than accommodate the exponentially cascading effects from changing the processes themselves. This still leads to qualitatively different individuals, including new tissues (Raff and Kaufman, 1983).] Thus, if one is to analyze evolution, a working knowledge of how to analyze heterochrony is critical.

Keywords

Body Size Descendant Species Ontogenetic Series Allometric Approach Allometric Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberch, P., 1982, Developmental constraints in evolutionary processes, in: Evolution and Development (J. T. Bonner, ed.), pp. 313–332, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  2. Alberch, P., 1985a, Problems with the interpretation of developmental sequences, Syst. Zool. 34: 46–58.CrossRefGoogle Scholar
  3. Alberch, P., 1985b, Developmental constraints: Why St. Bernards often have an extra digit and Poodles never do, Am. Nat. 126: 430–433.CrossRefGoogle Scholar
  4. Alberch, P., and Alberch, J., 1981, Heterochronic mechanisms of morphological diversification and evolutionary change in the neotropical salamander, Bolitoglossa occidentalis, J. Morphol. 167: 249–264.CrossRefGoogle Scholar
  5. Alberch, P., Gould, S. J., Oster, G. F., and Wake, D. B., 1979, Size and shape in ontogeny and phylogeny, Paleobiology 5: 296–317.Google Scholar
  6. Anderson, D. T., 1987, Developmental pathways and evolutionary rates, in: Rates of Evolution (K. S. Campbell and M. F. Day, eds.), pp. 143–155, Allen and Unwin, Boston.Google Scholar
  7. Atchley, W. R., 1984, Ontogeny, timing of development and genetic variance-covariance structure, Am Nat. 123: 519–540.CrossRefGoogle Scholar
  8. Atchley, W. R., 1987, Developmental quantitative genetics and the evolution of ontogenies, Evolution 41: 316–330.CrossRefGoogle Scholar
  9. Atchley, W. R., Rutledge, J. J., and Cowley, D. E., 1981, Genetic components of size and shape, Evolution 35: 1037–1055.CrossRefGoogle Scholar
  10. Bonner, J. T. (ed.), 1982, Evolution and Development, Springer-Verlag, Berlin.Google Scholar
  11. Bonner, J. T., and Horn, H. S., 1982, Selection for size, shape, and developmental timing, in: Evolution and Development, (J. T. Bonner, ed.), pp. 259–277, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  12. Calder, W., 1984, Size, Function, and Life History, Harvard University Press, Cambridge.Google Scholar
  13. Cheverud, J., 1982, Relationships among ontogenetic, static, and evolutionary allometry, Am. J. Phys. Anthropol. 59: 139–149.PubMedCrossRefGoogle Scholar
  14. Cock, A. G., 1966, Genetical aspects of metrical growth and form in animals, Q. Rev. Biol. 41: 131–190.PubMedCrossRefGoogle Scholar
  15. Davis, J. C., 1986, Statistics and Data Analysis in Geology, Wiley, New York.Google Scholar
  16. Edgecombe, G. D., and Chatterton, B. D. E., 1987, Heterochrony in the Silurian radiation of encrinurine trilobites, Lethaia 20: 337–351.CrossRefGoogle Scholar
  17. Emerson, S. B., 1986, Heterochrony and frogs: The relationship of a life history trait to morphological form, Am. Nat. 127: 167–183.CrossRefGoogle Scholar
  18. Gerhart, J. C., et ital., 1982, The cellular basis of morphogenetic change (Group Report), in: Evolution and Development (J. T. Bonner, ed.), pp. 87–113, Springer-Verlag, Berlin.Google Scholar
  19. Gittleman, J. L., 1986, Carnivore life history patterns: Allometric, ecological, and phylogenetic associations, Am. Nat. 217: 744–771.CrossRefGoogle Scholar
  20. Gould, S. J., 1966, Allometry and size in ontogeny and phylogeny, Biol. Rev. 41: 587–680.PubMedCrossRefGoogle Scholar
  21. Gould, S. J., 1968, Ontogeny and the explanation of form: An allometric analysis, J. Paleontol. 42: 81–98.Google Scholar
  22. Gould, S. J., 1970, Evolutionary paleontology and the science of form, Earth Sci. Rev. 6: 77–119.CrossRefGoogle Scholar
  23. Gould, S. J., 1974, The evolutionary significance of ‘bizarre’ structures: Antler size and skull size in the ‘Irish Elk’, Megaloceras gigantans, Evolution 28: 191–220.CrossRefGoogle Scholar
  24. Gould, S. J., 1977, Ontogeny and Phylogeny, Harvard University Press, Cambridge.Google Scholar
  25. Guerrant, E. O., 1982, Neotenic evolution ofDelphinium nudicaule (Ranuculaceae): A hummingbird-pollinated larkspur, Evolution 36: 699–712.CrossRefGoogle Scholar
  26. Hughes, T. P., 1984, Population dynamics based on individual size rather than age: A general model with a coral reef example, Am. Nat. 123: 778–795.CrossRefGoogle Scholar
  27. Huxley, J. S., 1932, Problems of Relative Growth, Methuen, London.Google Scholar
  28. Imbrie, J., 1956, Biometrical methods in the study of invertebrate fossils, Bull. Am. Mus. Nat. Hist. 108: 219–252.Google Scholar
  29. Katz, M. J., 1980, Allometry formula: A cellular model, Growth 44: 89–96.PubMedGoogle Scholar
  30. Kemp, P., and Bertness, M. D., 1984, Snail shape and growth rates: Evidence for plastic shell allometry in Littorina littorea, Proc. Natl. Acad. Sci. USA 81: 811–813.PubMedCrossRefGoogle Scholar
  31. Laird, A. K., 1965, Dynamics of relative growth, Growth 29: 249–263.PubMedGoogle Scholar
  32. Lande, R., 1979, Quantitative genetic analysis of multivariate evolution, applied to brain:body size allometry, Evolution 33: 402–416.CrossRefGoogle Scholar
  33. McKinney, M. L., 1984, Allometry and heterochrony in an Eocene echinoid lineage: Morphological change as a byproduct of size selection, Paleobiology 10: 407–419.Google Scholar
  34. McKinney, M. L., 1986, Ecological causation of heterochrony: A test and implications for evolutionary theory, Paleobiology 12: 282–289.Google Scholar
  35. McKinney, M. L., and Schoch, R. M., 1985, Titanothere allometry, heterochrony, and biomechanics: Revising an evolutionary classic, Evolution 39: 1352–1363.CrossRefGoogle Scholar
  36. McKinney, M. L., McNamara, K. J., Zachos, L. G., and Oyen, C. W., Heterochrony of growth fields: Evolution by less than monstrous hopefuls, Paleobiology (in review).Google Scholar
  37. McMahon, T. A., and Bonner, J. T., 1983, On Size and Life, Freeman, New York.Google Scholar
  38. McNamara, K. J., 1986, A guide to the nomenclature of heterochrony, J. Paleontol. 60: 4–13.Google Scholar
  39. Oster, G., and Alberch, P., 1982, Evolution and bifurcation of developmental programs, Evolution 36: 444–459.CrossRefGoogle Scholar
  40. Peters, R. H., 1983, The Ecological Implications of Body Size, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  41. Prothero, D. R., and Sereno, P. C., 1982, Allometry and paleoecology of medial Miocene dwarf rhinoceroses from the Texas Gulf Coastal Plain, Paleobiology 8: 16–30.Google Scholar
  42. Raff, R. A., and Kaufman, T. C., 1983, Embryos, Genes, and Evolution, Macmillan, New York.Google Scholar
  43. Reiss, J. O., 1988, The meaning of developmental time: Attempt at a metric for comparative embryology, Am. Nat. (in press).Google Scholar
  44. Riska, B., 1986, Some models for development, growth, and morphometric correlation, Evolution 40: 1303–1311.CrossRefGoogle Scholar
  45. Riska, B., and Atchley, W. R., 1985, Genetics of growth predict patterns of brain size evolution, Science 229: 668–671.PubMedCrossRefGoogle Scholar
  46. Schwartz, G. G., and Rosenblum, L. A., 1981, Allometry of primate hair density and the evolution of human hairlessness, Am. J. Phys. Anthropol. 55: 7–12.CrossRefGoogle Scholar
  47. Shea, B. T., 1983, Allometry and heterochrony in the African apes, Am. J. Phys. Anthropol. 62: 275–289.PubMedCrossRefGoogle Scholar
  48. Shea, B. T., 1985, Bivariate and multivariate growth allometry: Statistical and biological considerations, J. Zool. Lond. A 206: 367–390.CrossRefGoogle Scholar
  49. Slatkin, M., 1987, Quantitative genetics of heterochrony, Evolution 41: 799–811.CrossRefGoogle Scholar
  50. Thompson, D’A. W., 1917, On Growth and Form, Cambridge University Press, Cambridge.Google Scholar
  51. Tompkins, R., 1978, Genetic control of axolotl metamorphosis, Am. Zool. 18: 313–319.Google Scholar
  52. White, J. F., and Gould, S. J., 1965, Interpretation of the coefficient in the allometric equation, Am. Nat. 99: 5–18.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Michael L. McKinney
    • 1
  1. 1.Department of Geological Sciences, and Graduate Program in EcologyUniversity of TennesseeKnoxvilleUSA

Personalised recommendations