Genetic Basis for Heterochronic Variation

  • Victor Ambros
Part of the Topics in Geobiology book series (TGBI, volume 7)

Abstract

Genes encode the functional and structural components of cells and hence directly or indirectly define the behavior of individual cells and groups of cells in a developing system. In this sense the genome of an organism defines and controls the developmental processes that generate the final form of the organism. To examine the feasibility of rapid heterochronic change, it is important to determine how many genes must be mutated to cause heterochrony and the mechanisms by which those genes control developmental timing.

Keywords

Cell Fate Caenorhabditis Elegans Nematode Species Postembryonic Development Hypodermal Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberch, P., Gould, S. J., Oster, G. F., and Wake, D. B., 1979, Size and shape of ontogeny and phylogeny, Paleobiology 5: 296–317.Google Scholar
  2. Ambros, V., and Fixsen, W., 1987, Cell lineage variation among nematodes, in: Development as an Evolutionary Process (R. Raff and E. Raff, eds.), Liss, New York, pp. 139–160.Google Scholar
  3. Ambros, V., and Horvitz, J. R., 1984, Heterochronic mutants of the nematode Caenorhabditis elegans. Science 226:409–416.PubMedCrossRefGoogle Scholar
  4. Ambros, V., and Horvitz, H. R., 1987, The lin-14 locus of Caenorhabditis elegans controls the time of expression of specific postembryonic development events, Genes Dev. 1: 398–414.PubMedCrossRefGoogle Scholar
  5. Brenner, S., 1974, The genetics of Caenorhabditis elegans, Genetics 77: 71–94.PubMedGoogle Scholar
  6. Chalfie, M., Horvitz, H. R., and Sulston, J. E., 1981, Mutations that lead to reiterations in the cell lineages of Caenorhabditis elegans, Cell 24: 59–69.PubMedCrossRefGoogle Scholar
  7. Cock, A. G., 1966, Genetical aspects of metrical growth and form in animals, Q. Rev. Biol. 41: 131–190.PubMedCrossRefGoogle Scholar
  8. Constantini, F., and Lacy, E., 1981, Introduction of rabbit beta-globin into the mouse germ line, Nature 294: 92–94.CrossRefGoogle Scholar
  9. Cox, G. N., Staphrans, S., and Edgar, R. S., 1981, The cuticle of Caenorhabditis eJegans. II. Stagespecific changes in ultrastructure and protein composition during postembryonic development, Dev. Biol. 86: 456–470.PubMedCrossRefGoogle Scholar
  10. De Block, M., Herrera-Estrella, L., Van Montagu, M., Schell, J., and Zambryski, R., 1984, Expression of foreign genes in regenerated plants and in their progeny, EMBO J. 3: 1681–1690.PubMedGoogle Scholar
  11. Ferguson, E. L., and Horvitz, H. R., 1985, Identification and characterization of 22 genes that affect the vulval cell lineages of the nematode Caenorhabditis elegans, Genetics 110: 17–73.PubMedGoogle Scholar
  12. Fire, A., 1986, Integrative transformation of Caenorhabditis elegans, EMBO J. 5: 2673–2680.PubMedGoogle Scholar
  13. Fixsen, W., 1985, The genetic control of hypodermal cell lineages in the nematode C. elegans, Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge.Google Scholar
  14. Fixsen, W., Sternberg, P., Ellis, H., and Horvitz, H. R., 1985, Genes that affect cell fate during the development of Caenorhabditis elegans, Cold Spring Harbor Symp. Quantitat. Biol. 50: 99–128.CrossRefGoogle Scholar
  15. Fraser, R. A., and Abbott, U. K., 1971, Studies on limb morphogenesis IV. Experiments with the polydactylous mutant eudiplopedia. J. Exp. Zool. 176:237–248.PubMedCrossRefGoogle Scholar
  16. Goldschmidt, R., 1981, A preliminary report on some genetic experiments concerning evolution, Am. Nat. 52: 28–50.CrossRefGoogle Scholar
  17. Goodey, T., 1963, Soil and Fresh Water Nematodes, Wiley, New York.Google Scholar
  18. Gottlieb, L. D., 1984, Genetics and morphological evolution in plants, Am. Nat. 123: 681–709.CrossRefGoogle Scholar
  19. Gould, S. J., 1977, Ontogeny and Phylogeny, Harvard University Press, Cambridge.Google Scholar
  20. Greenwald, I. S., Sternberg, P. W., and Horvitz, H. R., 1983, lin-12 specifies cell fates in Caenorhabditis elegans, Cell 34: 435–444.PubMedCrossRefGoogle Scholar
  21. Hechler, H. C., and Taylor, D. P., 1966, The life histories of Seinura celeris, S. oliveirae, S. oxura and S. Steineri (Nematoda: Aphelenchoididae), Proc. Helminth. Soc. 33(1)71–83.Google Scholar
  22. Hodgkin, J. A., and Brenner, S., 1977, Mutations causing transformation of sexual phenotype in the nematode Caenorhabditis elegans, Genetics 86: 275–287.PubMedGoogle Scholar
  23. Kallman, K. D., and Schreibman, M. P., 1973, A sex-linked gene controlling gonadotrope differentiation and its significance in determining the age of sexual maturation and size of the platyfish, Xiphophorus maculatus, Gen. Comp. Endocrinol. 21: 287–304.PubMedCrossRefGoogle Scholar
  24. Kimble, J., and Hirsch, D., 1979, Post-embryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans, Dev. Biol. 70: 396–417.PubMedCrossRefGoogle Scholar
  25. Morata, G., and Lawrence, P. A., 1977, Homeotic genes, compartments and cell determination in Drosophila, Nature 265: 211–216.PubMedCrossRefGoogle Scholar
  26. Rubin, G. M., and Spradling, A. C., 1983, Genetic transformation of Drosophilia with transposable element vectors, Science 218: 348–353.CrossRefGoogle Scholar
  27. Ruvkun, G., Ambros, V., and Horvitz, H. R., 1988, Isolation and characterization of DNA sequences of lin-14 (in preparation).Google Scholar
  28. Scott, M. P., and Weiner, A. J., 1984, Structural relationships among genes that control development: Sequence homology between the antennapedia, ultrabithorax, and fushi tarazu loci of Drosophila, Proc. Natl. Acad. Sci. USA 81: 4115–4119.PubMedCrossRefGoogle Scholar
  29. Sinnott, E. W., 1958, The genetic basis of organic form, Ann N. Y. Acad. Sci 71: 1223–1233.PubMedCrossRefGoogle Scholar
  30. Sternberg, P. W., and Horvitz, H. R., 1981, Gonadal cell lineages of the nematode Panagrellus redivivus and implications for evolution by modification of cell lineages, Dev. Biol. 88: 147–166.PubMedCrossRefGoogle Scholar
  31. Sternberg, P. W., and Horvitz, H. R., 1982, Postembryonic nongonadal cell lineages of the nematode Panagrellus redivivus: Description and comparison with those of Caenorhabditis elegans, Dev. Biol. 93: 181–205.PubMedCrossRefGoogle Scholar
  32. Stinchcomb, D. T., Shaw, J. E., Carr, S. H., and Hirsh, D., 1985, Extrachromosomal DNA transformation of Caenorhabditis elegans, Mol Cell. Biol. 5: 3484–3496.Google Scholar
  33. Sulston, J. E., and Horvitz, H. R., 1977, Post-embryonic cell lineages of the nematode Caenorhabditis elegans, Dev. Biol. 56: 110–156.PubMedCrossRefGoogle Scholar
  34. Sulston, J. E., and Horvitz, H. R., 1981, Abnormal cell lineages in mutants of the nematode Caenorhabditis elegans, Dev. Biol. 82: 41–55.PubMedCrossRefGoogle Scholar
  35. Sulston, J. E., Schierenberg, E., White, J. G., and Thomson, J. N., 1983, The embryonic cell lineage of the nematode Caenorhabditis elegans, Dev. Biol. 100: 64–119.PubMedCrossRefGoogle Scholar
  36. Tompkins, R., 1978, Genic control of Axolotol metamorphosis Am. Zool. 18:313–319.Google Scholar
  37. Wigglesworth, V. B., 1940, The determination of characters at metamorphosis in Rhodnias prolixus (Hemiptera), J. Exp. Biol. 17: 201–222.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Victor Ambros
    • 1
  1. 1.Biological LaboratoriesHarvard UniversityCambridgeUSA

Personalised recommendations