Hot Electron Transport in Silicon Dioxide

  • D. J. DiMaria
  • M. V. Fischetti

Abstract

Hot electron transport in silicon dioxide is examined with emphasis on current experimental and theoretical 0 results. For oxide layers thicker than 100 Å, steady-state transport has been shown to control the carrier flow at all fields studied. The transition from a nearly thermal electron distribution at electric fields less than approximately 1.5 MV/cm to significantly hot distributions with average energies between 2 and 6 eV at higher fields of up to 16 MV/cm is discussed. The significance of non-polar phonon scattering in controlling the dispersive transport at higher electric fields, thereby preventing run-away and avalanche breakdown, is reviewed. For oxide thicknesses ≲ 100 Å, a transition from the steady-state to the ballistic transport regime occurs with the observation of quantum size effects and single phonon scattering events, as predicted theoretically. Also, both interface and bulk trap generation in SiO2 are shown to be caused by hot electrons with energies ≳ 2.2 eV.

Keywords

Oxide Thickness Trap Generation Ballistic Transport High Energy Tail Carrier Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.N.Theis, D.J.DiMaria, J.R.Kirtley, and D.W.Dong, Phys. Rev. Lett. 52, 1445 (1984).CrossRefGoogle Scholar
  2. 2.
    D.J.DiMaria, T.N.Theis, J.R.Kirtley, F.L.Pesavento, D.W.Dong, and S.D.Brorson, J. Appl. Phys. 2, 1214 (1985).Google Scholar
  3. 3.
    D.J.DiMaria, M.V.Fischetti, M.Arienzo, and E.Tiemey, J. Appl. Phys. 60, 1719 (1986).Google Scholar
  4. 4.
    S.D.Brorson, D.J.DiMaria, M.V.Fischetti, F.L.Pesavento, P.M.Solomon, and D.W.Dong, J. Appl. Phys. 58 1302 (1985).Google Scholar
  5. 5.
    D.J.DiMaria, M.V.Fischetti, E.Tierney, S.D.Brorson, Phys. Rev. Lett. 56, 1284 (1986).CrossRefGoogle Scholar
  6. 6.
    D.J.DiMaria, M.V.Fischetti, J.Batey, L.Dori, E.Tierney, and J.Stasiak, Phys. Rev. Lett. 57, 3213 (1986).CrossRefGoogle Scholar
  7. 7.
    M.V.Fischetti, D.J.DiMaria, L.Dori, J.Batey, E.Tiemey, and J.Stasiak, Phys. Rev. B 35, 4404 (1987).CrossRefGoogle Scholar
  8. 8.
    M.V.Fischetti, Phys. Rev. Lett. 53, 1755 (1984).CrossRefGoogle Scholar
  9. 9.
    M.V.Fischetti, D.J.DiMaria, S.D.Brorson, T.N.Theis, and J.R.Kirtley, Phys. Rev. B 31, 8124 (1985).CrossRefGoogle Scholar
  10. 10.
    M.V.Fischetti and D.J.DiMaria, Phys. Rev. Lett. 55, 2455 (1985).CrossRefGoogle Scholar
  11. 11.
    W.Porod and D.K.Ferry, Phys. Rev. Lett. 54, 1189 (1985).CrossRefGoogle Scholar
  12. 12.
    W.Porod and D.K.Ferry, 4th Intl. Conf. Hot Electrons, Innsbruck, Austria, July 1985, unpublished.Google Scholar
  13. 13.
    D.J.DiMaria and J.R.Abemathey, J. Appl. Phys. 60, 1727 (1986).Google Scholar
  14. 14.
    H.R.Zeller, P.Pfluger, and J.Bemasconi, IEEE Trans. Elect. Insul. EI-19, 200 (1984).Google Scholar
  15. 15.
    P.Pfluger, H.R.Zeller, and J.Bemasconi, Phys. Rev. Lett. 53, 94 (1984).CrossRefGoogle Scholar
  16. 16.
    E.Cartier and P.Pfluger, Phys. Rev. B 34, 8822 (1986).CrossRefGoogle Scholar
  17. 17.
    E.Cartier and P.Pfluger, IEEE Trans. Electr. Insul. EI-22, 123 (1987).Google Scholar
  18. 18.
    E.Cartier, P.Pfluger, JJ.Pireaux, and M.Rei Vilar, Appl. Phys. A 44, 43 (1987).Google Scholar
  19. 19.
    E.Cartier and P.Pfluger, to be published in Physica Scripta.Google Scholar
  20. 20.
    H.H.Fitting and J.U.Frieman, Phys. Status Solidi A 69, 349 (1982).CrossRefGoogle Scholar
  21. 21.
    D.K.Ferry, Appl. Phys. Lett. 27, 689 (1975).Google Scholar
  22. 22.
    D.K.Ferry, J. Appl. Phys. 50, 1422 (1979).Google Scholar
  23. 23.
    D.K.Ferry, in The Physics of SiO 2 and Its Interfaces, edited by S.T.Pantelides ( Pergamon, New York, 1978 ), pp. 29–34.Google Scholar
  24. 24.
    T.H.DiStefano and M.Shatzkes, Appl. Phys. Lett. 25, 685 (1974).Google Scholar
  25. 25.
    T.H.DiStefano and M.Shatzkes, J. Vac. Sci. Technol. 13, 50 (1976).Google Scholar
  26. 26.
    P.Solomon and N.Klein, Solid State Commun. 17, 1397 (1975).CrossRefGoogle Scholar
  27. 27.
    P.Solomon, J. Vac. Sci. Technol. 14, 1122 (1977).Google Scholar
  28. 28.
    D.J.DiMaria and P.C.Arnett, IBM J. Res. Develop. 21, 227 (1977).Google Scholar
  29. 29.
    R.C.Hughes, Phys. Rev. B 15, 2012 (1977).Google Scholar
  30. 30.
    T.N.Theis, J.R.Kirtley, D.J.DiMaria, and D.W.Dong, Phys. Rev. Lett. 50, 750 (1983).Google Scholar
  31. 31.
    A.S.Ginovker, V.A.Gritsenko, and S.P.Sinitsa, Phys. Status Solidi A 26, 489 (1974).CrossRefGoogle Scholar
  32. 32.
    Z.A.Weinberg, W.C.Johnson, and M.A.Lampert, Appl. Phys. Lett. 25, 42 (1974).Google Scholar
  33. 33.
    P.M.Solomon, in The Physics of Si0 2 and Its Interfaces, edited by S.T.Pantelides ( Pergamon, New York, 1978 ), pp. 35–39.Google Scholar
  34. 34.
    R.C.Alig, S.Bloom, and C.W.Struck, Phys. Rev. B 22, 5565 (1980).Google Scholar
  35. 35.
    D.J.DiMaria and D.W.Dong, J. Appl. Phys. 51, 2722 (1980).Google Scholar
  36. 36.
    B.K.Ridley, J. Appl. Phys. 46, 998 (1975).Google Scholar
  37. 37.
    C.N.Berglund and R.J.Powell, J. Appl. Phys. 42, 573 (1971).Google Scholar
  38. 38.
    R.Poirier and J. Olivier, Appl. Phys. Lett. 21, 334 (1972).Google Scholar
  39. 39.
    P.M.Solomon and D.J.DiMaria, J. Appl. Phys. 52, 5867 (1981).Google Scholar
  40. 40.
    G.Lewicki and J.Maserjian, J. Appl. Phys. 46, 3032 (1975).Google Scholar
  41. 41.
    J.Maserjian and N.Zamani, J. Appl. Phys. 53, 559 (1982).Google Scholar
  42. 42.
    C.S.Jeng, T.R.Ranganath, C.H.Huang, H.S.Jones, and T.T.L.Chang, in Int. Elec. Dey. Meeting Technical Digest 1981 ( IEEE, New York, 1983 ), pp. 388–391.Google Scholar
  43. 43.
    M.-S. Liang and C.Hu, in Int. Elec. Dey. Meeting Technical Digest 1981 ( IEEE, New York, 1981 ), pp. 396–399.Google Scholar
  44. 44.
    A.Badihi, B.Eitan, I.Cohen, and J.Shappir, Appl. Phys. Lett. 40, 396 (1982).Google Scholar
  45. 45.
    M.-S. Liang, C.Chang, W.Yang, C.Hu, and R.W.Brodersen, in Int. Elec. Dey. Meeting Technical Digest 1983 ( IEEE, New York, 1983 ), pp. 186–189.Google Scholar
  46. 46.
    M.M.Heyns, R.F.DeKeersmaecker, and M.W.Hillen, Appl. Phys. Lett. 44, 202 (1984).Google Scholar
  47. 47.
    M.M.Heyns and R.F.DeKeersmaecker, J. Appl. Phys. 58, 3936 (1985).Google Scholar
  48. 48.
    M.-S.Liang, J.Y.Choi, P.K.Ko, and C.Hu, in Int. Elec. Dey. Meeting Technical Digest 1984 ( IEEE, New York. 1984 ). pp. 152–156.Google Scholar
  49. 49.
    Y.Nissan-Cohen. J.Shappir, and D.Frohman-Bentchkowsky, J. Appl. Phys. 60, 2024 (1986).Google Scholar
  50. 50.
    S.Horiguchi. T.Kobayashi. and K.Saito, J. Appl. Phys. 58, 387 (1985).Google Scholar
  51. 51.
    D.J.DiMaria. Appl. Phys. Lett. 51, 655 (1987).Google Scholar
  52. 52.
    D.J.DiMaria and J.Stasiak. unpublished.Google Scholar
  53. 53.
    R.Gale, F.J.Fcigl. C.W.Magee, and D.R.Young, J. Appl. Phys. 54, 6938 (1983).Google Scholar
  54. 54.
    A.F.J.Levi. J.R.Hayes. P.M.Platzman, and W.Wiegmann, Phys. Rev. Lett. 55, 2071 (1985).Google Scholar
  55. 55.
    M.Heiblum. M Nathan. D.C.Thomas, and C.M.Knoedler, Phys. Rev. Lett. 55, 2000 (1985).Google Scholar
  56. 56.
    M.Heiblum. I.M.Anderson, and C.M.Knoedler, Appl. Phys. Lett. 49, 207 (1986).Google Scholar
  57. 57.
    N.F.Mott and E.A.Davis. in Electronic Processes in Non-Crystalline Materials, 2nd edition ( Clarendon Press, Oxford, 1979 ), pp. 512–516.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • D. J. DiMaria
    • 1
  • M. V. Fischetti
    • 1
  1. 1.IBM Thomas J. Watson Reasearch CenterYorktown HeightsUSA

Personalised recommendations