Nature of Radiation-Induced Point Defects in Amorphous SiO2 and their Role in SiO2-ON-Si Structures

  • D. L. Griscom
  • D. B. Brown
  • N. S. Saks

Abstract

Molecular-scale models for the post-irradiation buildup of interface states in SiO2-on-Si structures are critically examined in light of (i) the natures of paramagnetic point defects in amorphous silicon djoxide known from electron spin resonance and (ii) recent electrical data1,2 obtained for γ-irradiated MOSFETs. Evidence is cited for the production of atomic hydrogen in the oxide layer, powered by the recombination of excitons (bound e-h pairs) at the sites of OH groups. There is strong new evidence2 that a small fraction (~1 %) of this H0 reacts directly with the interface to form electrically-active interface states. However, the majority of the radiolytic H0 may be converted to mobile protons by reaction with oxide trapped charges in the form of small polarons. Under such conditions, the field-aided drift of these protons to the interface is believed to be the rate limiting step in the long-term buildup of interface states.

Keywords

Electron Spin Resonance Interface State Gate Bias Small Polaron Bulk Silica 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N.S. Saks, C.M. Dozier, and D.B. Brown, accepted for 1988 IEEE Nuclear and Space Radiation Effects Conf., Portland, OR, I1–15 July.Google Scholar
  2. 2.
    N.S. Saks and R.B. Klein, accepted for 1988 IEEE Nuclear and Space Radiation Effects Conf., Portland, OR, 11–15 July.Google Scholar
  3. 3.
    E.H. Nicollian and J.R. Brews, MOS (Metal Oxide Semiconductor Technology), ( John Wiley, New York, 1982 ).Google Scholar
  4. 4.
    N. Azuma, T. Miyazaki, K. Fueki, I. Sakaguchi, and S.-I. Hirano, J. Am. Ceram. Soc. 69, 19 (1986).CrossRefGoogle Scholar
  5. 5.
    D.L. Griscom, J. Appl. Phys. 58, 2524 (1985).CrossRefGoogle Scholar
  6. 6.
    R.A. Weeks, J. Appl. Phys. 27, 1376 (1956).CrossRefGoogle Scholar
  7. 7.
    D.L. Griscom, E.J. Friebele, and G.H. Sigel, Jr., Sol. State Commun. 15, 479 (1974).CrossRefGoogle Scholar
  8. 8.
    E.J. Friebele, D.L. Griscom, M. Stapelbroek, and R.A. Weeks, Phys. Rev. Lett. 42, 1346 (1979).CrossRefGoogle Scholar
  9. 9.
    M. Stapelbroek, O.L. Griscom, E.J. Friebele, and G.H. Sigel, Jr., J. Non-Cryst. Solids 32, 313 (1979).CrossRefGoogle Scholar
  10. 10.
    P.M. Lenarbn ano P.V. Dressendorfer, J. Appl. Phys. 55, 3495 (1984).CrossRefGoogle Scholar
  11. 11.
    K.L. Brower, P.M. Lenahan and P.V. Dressendorfer, Appl. Phys. Lett. 41, 251 (1982).CrossRefGoogle Scholar
  12. 12.
    W.E. Carlos. Nucl. Inst. & Methods B1, 383 (1984).CrossRefGoogle Scholar
  13. 13.
    E.H. Poindexter and P.J. Caplan, Prog. Surf. Sci. 14, 201–294 (1983).CrossRefGoogle Scholar
  14. 14.
    K.L. Brower. Appl. Phys. Lett. 43, 1111 (1983).CrossRefGoogle Scholar
  15. 15.
    D.L. Griscom. Nucl. Inst. & Methods B1, 481 (1984).CrossRefGoogle Scholar
  16. 16.
    W.L. Warren and P.M. Lenahan, IEEE Trans. Nucl. Sci. NS-34, 1355 (1987).Google Scholar
  17. 17.
    A.H. Edwards and W.B. Fowler, Phys. Rev. 826, 6649 (1982).Google Scholar
  18. 18.
    R.A.B. Devine. J.J. Capponi, and J. Arndt, Phys. Rev. B 35, 770 (1987).CrossRefGoogle Scholar
  19. 19.
    R.L. Pfeffer. in. The Physics and Technology of Amorphous Si02, R.A.B. Devine, Ed. ( Plenum, New York, 1987 ).Google Scholar
  20. 20.
    D.L. Griscom, in, Structure and Bonding in Noncrystalline Solids, A.G. Revesz and G.E. Walrafen, Eds. ( Plenum, New York, 1986 ). p. 369.Google Scholar
  21. 21.
    O.L. Griscom. M. Stapelbroek, and E.J. Friebele, J. Chem. Phys. 78, 1638 (1983).CrossRefGoogle Scholar
  22. 22.
    D.L. Griscom, J. Non-Cryst. Solids 68, 301 (1984).CrossRefGoogle Scholar
  23. 23.
    D.L. Griscom, Proc. 33rd Freq. Control Symp. ( Electronic Industries Asociation, Washington DC, 1979 ) p. 98.Google Scholar
  24. 24.
    N. Itoh, K. Tanimura, amd C. Itoh, Proc. Int. Conf. The Physics and Technology of Amorphous Si02, Les Arcs, France, 29 June-3 July, 1987.Google Scholar
  25. 25.
    M.A. Mondragon, C.Y. Chen, and L.E. Halliburton, J. Appl. Phys. (in press).Google Scholar
  26. 26.
    J.M. McGarrity, P.S. Winokur, H.E. Boesch, Jr., and F.B. McLean, in, The Physics of 5102 and Its Interfaces, S.T. Pantelides, Ed. ( Pergamon, New York, 1978 ), pp. 428.Google Scholar
  27. 27.
    A.H. Edwards, (private communication).Google Scholar
  28. 28.
    L. Pauling, Nature of the Chemical Bond, 3rd Edit. ( Cornell University Press, Ithaca, 1960 ).Google Scholar
  29. 29.
    D.B. Brown, IEEE Trans. Nucl. Sci., NS-32, 3900 (1985).Google Scholar
  30. 30.
    F.B. McLean, IEEE Trans. Nucl. Sci. NS-27, 1651 (1980).Google Scholar
  31. 31.
    S.K. Lai, Appl. Phys. Lett. 39, 58 (1981).CrossRefGoogle Scholar
  32. 32.
    G.J. Hu and W.C. Johnson, J. Appl. Phys. 54, 1441 (1983).CrossRefGoogle Scholar
  33. 33.
    S.T. Chang, J.K. Wu, and S.A. Lyon, Appl. Phys. Lett. 48, 662 (1986).CrossRefGoogle Scholar
  34. 34.
    P. Winokur and E. Boesch, (quoted in ref. 30).Google Scholar
  35. 35.
    H.E. Boesch, Jr., IEEE Trans. Nucl. Sci. NS-29. 1446 (1982).Google Scholar
  36. 36.
    C.L. Marquardt and G.H. Sigel, Jr., IEEE Trans. Nucl. Sci. NS-22, 2234 (1975).Google Scholar
  37. 37.
    A.D. Marwick and D.R. Young, J. Appl. Phys. 63, 2291 (1988).CrossRefGoogle Scholar
  38. 38.
    J.M. McGarrity, IEEE Trans. Nucl. Sci. NS-27, 1739 (1980)Google Scholar
  39. 39.
    R.J. Powell and G.F. Derbenwick, IEEE Trans. Nucl. Sci. NS-18, 99 (1971).Google Scholar
  40. 40.
    R.C. Hughes and D. Emin, In The Physics of 510 2 and Its Interfaces, S.T. Pantelides, Ed. ( Pergamon, New York, 1978 ) p. 147Google Scholar
  41. 41.
    J.A. Weil, Rad. Effects 26, 261 (1975).CrossRefGoogle Scholar
  42. 42.
    W. Hayes and T.L. Jenkin, J. Phys. C 19, 6211 (1986).CrossRefGoogle Scholar
  43. 43.
    N.S. Saks, C.M. Dozier, and D.B. Brown, 24th Nucl. Space Radiation Effects Conf., Snowmass, CO, July 28031, 1987.Google Scholar
  44. 44.
    S. Wolf and R.N. Tauber, Silicon Processing for the VLSI Era, Vol. 1: Process Technology, (Lattice Press, Sunset Beach, CA, 1986). press).Google Scholar
  45. 45.
    A.G. Revesz, IEEE Trans. Nucl. Sci. NS-24, 2102 (1977).Google Scholar
  46. 46.
    C.M. Svensson, In The Physics of SiO and Its Interfaces, S.T. Pantelides, Ed. (Pergamon, New York, i-978), p. 328.Google Scholar
  47. 47.
    C.M. Dozier and D.B. Brown, IEEE Trans. Nucl. Sci. NS-27, 1694 (1980)Google Scholar
  48. 48.
    J.R. Schwank, P.S. Winokur, F.W. Sexton, D.M. Fleetwood, P.V. Dressendorfer, J.H. Perry, D.T. Sanders, and D.C. Turpin, IEEE Trans. Nucl. Sci. NS-33, 1178 (1986).Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • D. L. Griscom
    • 1
  • D. B. Brown
    • 1
  • N. S. Saks
    • 1
  1. 1.Naval Research LaboratoryUSA

Personalised recommendations